Application of LSTM and GRU neural networks to improve peristaltic pump dosing accuracy

IF 4.3
Davide Privitera , Stefano Bellissima , Sandro Bartolini
{"title":"Application of LSTM and GRU neural networks to improve peristaltic pump dosing accuracy","authors":"Davide Privitera ,&nbsp;Stefano Bellissima ,&nbsp;Sandro Bartolini","doi":"10.1016/j.iswa.2025.200571","DOIUrl":null,"url":null,"abstract":"<div><div>Peristaltic pumps (PP), widely acknowledged for their benefits in pharmaceutical contexts, face challenges in achieving optimal dosing accuracy. This investigation contributes novel insights for the improvement of dosing precision, identifying how to apply AI models, specifically focusing on Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural networks over a realistic span of target volumes. To provide a more accurate representation of real-world performance, we consider a modified root mean square error metric (<span><math><mrow><mi>R</mi><mi>M</mi><mi>S</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>P</mi><mi>P</mi></mrow></msub></mrow></math></span>) that directly compares dispensed volumes to target volumes. Based on this the study delves into two main methodologies: an iterative retraining method, called Online Training, and Pre-trained approach. Online Training shows best results, especially for volumes below 1.0 ml, achieving 38.4% improvement in <span><math><mrow><mi>R</mi><mi>M</mi><mi>S</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>P</mi><mi>P</mi></mrow></msub></mrow></math></span> and 31.6% in standard deviation (<span><math><mrow><mi>S</mi><mi>T</mi><mi>D</mi></mrow></math></span>). Pre-trained models are faster and exhibit promising outcomes especially for volumes above 1.0 ml, with a three-features approach delivering the best performance (13.8% and 4.6% improvements in <span><math><mrow><mi>R</mi><mi>M</mi><mi>S</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>P</mi><mi>P</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>S</mi><mi>T</mi><mi>D</mi></mrow></math></span>, respectively). Overall, the findings highlight the effectiveness of iterative learning techniques, particularly for smaller dosage amounts, which complements the good performance of non-AI approaches for larger ones.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"27 ","pages":"Article 200571"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325000973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Peristaltic pumps (PP), widely acknowledged for their benefits in pharmaceutical contexts, face challenges in achieving optimal dosing accuracy. This investigation contributes novel insights for the improvement of dosing precision, identifying how to apply AI models, specifically focusing on Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural networks over a realistic span of target volumes. To provide a more accurate representation of real-world performance, we consider a modified root mean square error metric (RMSEPP) that directly compares dispensed volumes to target volumes. Based on this the study delves into two main methodologies: an iterative retraining method, called Online Training, and Pre-trained approach. Online Training shows best results, especially for volumes below 1.0 ml, achieving 38.4% improvement in RMSEPP and 31.6% in standard deviation (STD). Pre-trained models are faster and exhibit promising outcomes especially for volumes above 1.0 ml, with a three-features approach delivering the best performance (13.8% and 4.6% improvements in RMSEPP and STD, respectively). Overall, the findings highlight the effectiveness of iterative learning techniques, particularly for smaller dosage amounts, which complements the good performance of non-AI approaches for larger ones.
应用LSTM和GRU神经网络提高蠕动泵加药精度
蠕动泵(PP)在制药领域的益处得到广泛认可,但在实现最佳给药准确性方面面临挑战。这项研究为提高给药精度提供了新的见解,确定了如何应用人工智能模型,特别是关注长短期记忆(LSTM)和门控循环单元(GRU)神经网络在现实目标体积范围内的应用。为了提供更准确的实际性能表示,我们考虑了一个修改的均方根误差度量(RMSEPP),它直接比较分配的卷和目标卷。在此基础上,该研究深入研究了两种主要方法:一种是迭代再培训方法,称为在线培训,另一种是预训练方法。在线培训显示出最好的效果,特别是对于1.0 ml以下的体积,RMSEPP改善38.4%,标准偏差(STD)改善31.6%。预训练模型速度更快,表现出有希望的结果,特别是对于1.0 ml以上的体积,具有三个特征的方法提供最佳性能(RMSEPP和STD分别提高13.8%和4.6%)。总的来说,研究结果强调了迭代学习技术的有效性,特别是对于较小的剂量,这补充了非人工智能方法在较大剂量时的良好表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信