Advancements in secure quantum communication and robust key distribution techniques for cybersecurity applications

Sunil K. Singh , Sudhakar Kumar , Anureet Chhabra , Akash Sharma , Varsha Arya , M. Srinivasan , Brij B. Gupta
{"title":"Advancements in secure quantum communication and robust key distribution techniques for cybersecurity applications","authors":"Sunil K. Singh ,&nbsp;Sudhakar Kumar ,&nbsp;Anureet Chhabra ,&nbsp;Akash Sharma ,&nbsp;Varsha Arya ,&nbsp;M. Srinivasan ,&nbsp;Brij B. Gupta","doi":"10.1016/j.csa.2025.100089","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum communication is a rapidly evolving field that leverages quantum physics to enable secure and efficient information exchange. A cornerstone of quantum cryptography is Quantum Key Distribution (QKD), a secure key exchange mechanism that ensures the confidentiality of transmitted data by employing the no-cloning theorem and the uncertainty principle of quantum mechanics. This study explores key aspects of quantum networks and communication, including quantum states, QKD, and quantum cryptographic protocols, with a focus on photon polarization states and entangled qubits as fundamental building blocks of quantum information. Additionally, two well-established quantum cryptographic protocols, BB84 and E91, are analyzed for their principles and advantages in secure communication. However, challenges such as quantum state loss in communication channels hinder the long-distance transmission of quantum information. To address these issues, error detection, measurement, and correction techniques are investigated, with quantum error correction methods playing a crucial role in mitigating noise and imperfections, ensuring accurate quantum information transmission, and enhancing the overall efficiency of quantum communication systems. Beyond conventional networks, quantum communication holds vast potential for cybersecurity applications, paving the way for next-generation secure communication frameworks.</div></div>","PeriodicalId":100351,"journal":{"name":"Cyber Security and Applications","volume":"3 ","pages":"Article 100089"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber Security and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772918425000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum communication is a rapidly evolving field that leverages quantum physics to enable secure and efficient information exchange. A cornerstone of quantum cryptography is Quantum Key Distribution (QKD), a secure key exchange mechanism that ensures the confidentiality of transmitted data by employing the no-cloning theorem and the uncertainty principle of quantum mechanics. This study explores key aspects of quantum networks and communication, including quantum states, QKD, and quantum cryptographic protocols, with a focus on photon polarization states and entangled qubits as fundamental building blocks of quantum information. Additionally, two well-established quantum cryptographic protocols, BB84 and E91, are analyzed for their principles and advantages in secure communication. However, challenges such as quantum state loss in communication channels hinder the long-distance transmission of quantum information. To address these issues, error detection, measurement, and correction techniques are investigated, with quantum error correction methods playing a crucial role in mitigating noise and imperfections, ensuring accurate quantum information transmission, and enhancing the overall efficiency of quantum communication systems. Beyond conventional networks, quantum communication holds vast potential for cybersecurity applications, paving the way for next-generation secure communication frameworks.
安全量子通信和鲁棒密钥分发技术在网络安全应用中的进展
量子通信是一个快速发展的领域,它利用量子物理来实现安全有效的信息交换。量子密钥分发(QKD)是量子密码学的基石,它是一种安全的密钥交换机制,利用量子力学的不可克隆定理和不确定性原理确保传输数据的机密性。本研究探讨了量子网络和通信的关键方面,包括量子态、量子密钥分配和量子密码协议,重点关注光子偏振态和纠缠量子比特作为量子信息的基本构建块。此外,还分析了BB84和E91两种成熟的量子加密协议的原理和在安全通信方面的优势。然而,通信信道中量子态损耗等问题阻碍了量子信息的远距离传输。为了解决这些问题,研究了误差检测、测量和校正技术,其中量子误差校正方法在减轻噪声和缺陷、确保准确的量子信息传输和提高量子通信系统的整体效率方面发挥着至关重要的作用。超越传统网络,量子通信在网络安全应用方面具有巨大潜力,为下一代安全通信框架铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信