{"title":"On the Aw–Rascle–Zhang traffic models with nonlocal look-ahead interactions","authors":"Thomas Hamori , Changhui Tan","doi":"10.1016/j.na.2025.113930","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new family of second-order traffic flow models, extending the Aw–Rascle–Zhang (ARZ) model to incorporate nonlocal interactions. Our model includes a specific nonlocal Arrhenius-type look-ahead slowdown factor. We establish both local and global well-posedness theories for these nonlocal ARZ models.</div><div>In contrast to the local ARZ model, where generic smooth initial data typically lead to finite-time shock formation, we show that our nonlocal ARZ model exhibits global regularity for a class of smooth subcritical initial data. Our result highlights the potential of nonlocal interactions to mitigate shock formations in second-order traffic flow models.</div><div>Our analytical approach relies on investigating phase plane dynamics. We introduce a novel comparison principle based on a mediant inequality to effectively handle the nonlocal information inherent in our model.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113930"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001841","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a new family of second-order traffic flow models, extending the Aw–Rascle–Zhang (ARZ) model to incorporate nonlocal interactions. Our model includes a specific nonlocal Arrhenius-type look-ahead slowdown factor. We establish both local and global well-posedness theories for these nonlocal ARZ models.
In contrast to the local ARZ model, where generic smooth initial data typically lead to finite-time shock formation, we show that our nonlocal ARZ model exhibits global regularity for a class of smooth subcritical initial data. Our result highlights the potential of nonlocal interactions to mitigate shock formations in second-order traffic flow models.
Our analytical approach relies on investigating phase plane dynamics. We introduce a novel comparison principle based on a mediant inequality to effectively handle the nonlocal information inherent in our model.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.