2D DOA estimation for uniform planar array: A closed-form performance bound framework based on information entropy

IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yushan Xie , Dazhuan Xu , Han Zhang , Jiaqi Li , Xiaofei Zhang
{"title":"2D DOA estimation for uniform planar array: A closed-form performance bound framework based on information entropy","authors":"Yushan Xie ,&nbsp;Dazhuan Xu ,&nbsp;Han Zhang ,&nbsp;Jiaqi Li ,&nbsp;Xiaofei Zhang","doi":"10.1016/j.dsp.2025.105544","DOIUrl":null,"url":null,"abstract":"<div><div>The theoretical performance bound plays a pivotal role in parameter estimation by establishing benchmarks for evaluating the asymptotic efficiency of estimators. While the classical Cramér-Rao bound (CRB) in non-Bayesian frameworks maintains strict validity only in asymptotic regions, Bayesian approaches can construct globally tight bounds through prior information but suffer from computational bottlenecks induced by high-dimensional integrals and the absence of explicit expressions. This study proposes a novel entropy error bound (EEB) based on information entropy theory for two-dimensional (2D) joint direction of arrival (DOA) estimation and 1D independent estimation in uniform planar arrays (UPAs). By establishing a normalized differential entropy model under signal-to-noise ratio (SNR) partitioning, we derive closed-form analytical solutions for EEB with explicit expressions. These explicit characteristics quantitatively reveal the impact laws of the number of array elements, the root mean square aperture width, and the number of snapshots on estimation performance. Multi-scenario simulations validate that the proposed EEB maintains global tightness across various SNR conditions, thereby providing a universal performance benchmark for arbitrary parameter estimators.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"168 ","pages":"Article 105544"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425005664","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The theoretical performance bound plays a pivotal role in parameter estimation by establishing benchmarks for evaluating the asymptotic efficiency of estimators. While the classical Cramér-Rao bound (CRB) in non-Bayesian frameworks maintains strict validity only in asymptotic regions, Bayesian approaches can construct globally tight bounds through prior information but suffer from computational bottlenecks induced by high-dimensional integrals and the absence of explicit expressions. This study proposes a novel entropy error bound (EEB) based on information entropy theory for two-dimensional (2D) joint direction of arrival (DOA) estimation and 1D independent estimation in uniform planar arrays (UPAs). By establishing a normalized differential entropy model under signal-to-noise ratio (SNR) partitioning, we derive closed-form analytical solutions for EEB with explicit expressions. These explicit characteristics quantitatively reveal the impact laws of the number of array elements, the root mean square aperture width, and the number of snapshots on estimation performance. Multi-scenario simulations validate that the proposed EEB maintains global tightness across various SNR conditions, thereby providing a universal performance benchmark for arbitrary parameter estimators.
均匀平面阵列二维方位估计:一种基于信息熵的封闭式性能边界框架
理论性能界在参数估计中起着关键作用,它为估计器的渐近效率建立了评价基准。非贝叶斯框架中的经典cram - rao界(CRB)仅在渐近区域保持严格的有效性,而贝叶斯方法可以通过先验信息构建全局紧界,但存在高维积分和缺乏显式表达式的计算瓶颈。本文提出了一种基于信息熵理论的二维联合到达方向估计和一维独立估计的熵误差界。通过建立信噪比(SNR)划分下的归一化微分熵模型,推导出具有显式表达式的EEB的闭式解析解。这些显式特征定量地揭示了阵列元素数量、均方根孔径宽度和快照数量对估计性能的影响规律。多场景仿真验证了所提出的EEB在各种信噪比条件下保持全局紧密性,从而为任意参数估计器提供了通用性能基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信