{"title":"CD2–CD58 axis orchestrates cytotoxic T lymphocyte function and metabolic crosstalk in breast cancer brain metastasis","authors":"Guanyou Huang, Yigong Wei, Xiaohong Hou, Xin Jia, Yong Yu, Xu Li, Shanshan Yu","doi":"10.1002/ccs3.70040","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the impact of the CD2–CD58 signaling axis on effector T cell function and tumor metabolic crosstalk in breast cancer brain metastasis (BCBM) using single-cell transcriptomic analysis. scRNA-seq data analysis revealed the critical role of CD2–CD58 signaling between CD8<sup>+</sup> T cells and tumor cells in BCBM. Functional assays demonstrated that CD2 knockdown inhibited cytotoxic T lymphocyte (CTL) proliferation, activation, and cytotoxicity, leading to impaired tumor cell recognition and enhanced proliferation, migration, and invasion. In vivo studies showed that CD2-deficient CTLs promoted tumor growth and brain metastasis while affecting metabolic reprogramming by altering key enzyme expressions in pyrimidine biosynthesis and arginine metabolism pathways. The findings suggest that CD2 enhances CTL function against tumor cells and influences their metabolic states, highlighting the role of CD2 in remodeling the brain metastatic microenvironment in breast cancer.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"19 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70040","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70040","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the impact of the CD2–CD58 signaling axis on effector T cell function and tumor metabolic crosstalk in breast cancer brain metastasis (BCBM) using single-cell transcriptomic analysis. scRNA-seq data analysis revealed the critical role of CD2–CD58 signaling between CD8+ T cells and tumor cells in BCBM. Functional assays demonstrated that CD2 knockdown inhibited cytotoxic T lymphocyte (CTL) proliferation, activation, and cytotoxicity, leading to impaired tumor cell recognition and enhanced proliferation, migration, and invasion. In vivo studies showed that CD2-deficient CTLs promoted tumor growth and brain metastasis while affecting metabolic reprogramming by altering key enzyme expressions in pyrimidine biosynthesis and arginine metabolism pathways. The findings suggest that CD2 enhances CTL function against tumor cells and influences their metabolic states, highlighting the role of CD2 in remodeling the brain metastatic microenvironment in breast cancer.
期刊介绍:
The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies.
Research manuscripts can be published under two different sections :
In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research.
In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.