Buried Interface Modification for Reduced Open-Circuit Voltage Loss in Perovskite Solar Cells With Efficiency Exceeding 25.8%

IF 12
Weiwei Sun, Kexiang Wang, Weifeng Liu, Yansheng Sun, Yukun Gao, Tingting You, Hong Lian, Xiaofeng Huang, Shuanglong Wang, Penggang Yin
{"title":"Buried Interface Modification for Reduced Open-Circuit Voltage Loss in Perovskite Solar Cells With Efficiency Exceeding 25.8%","authors":"Weiwei Sun,&nbsp;Kexiang Wang,&nbsp;Weifeng Liu,&nbsp;Yansheng Sun,&nbsp;Yukun Gao,&nbsp;Tingting You,&nbsp;Hong Lian,&nbsp;Xiaofeng Huang,&nbsp;Shuanglong Wang,&nbsp;Penggang Yin","doi":"10.1002/cnl2.70042","DOIUrl":null,"url":null,"abstract":"<p>In n–i–p perovskite solar cells (PSCs), the buried interface of the perovskite layer is crucial for boosting both performance and stability. Here, multifunctional small molecule potassium trifluoromethanesulfonate (TFSK) is employed as an interlayer to efficiently bridge SnO<sub>2</sub> and the buried perovskite film, simultaneously regulating interfacial energetics and morphology. This strategy provides several advantages: (1) TFSK passivates oxygen vacancy defects and surface hydroxyl groups on SnO<sub>2</sub>, while also improving energy level alignment; (2) TFSK modification induces a loose and porous morphology in PbI<sub>2</sub>, facilitating the diffusion of ammonium salts and promoting sufficient ionic reactions to high-quality FAPbI<sub>3</sub> films; (3) TFSK interacts strongly with perovskite through Lewis acid–base interaction (between S=O groups and uncoordinated Pb²⁺) and hydrogen bonding (between F<sup>−</sup> and formamidinium cations), significantly suppressing non-radiative recombination. Consequently, the quality of both SnO<sub>2</sub> and perovskite films is significantly improved, which greatly boosts the power conversion efficiency of small-size PSCs to 25.82%, with a high open-circuit voltage of 1.19 V, a minimal voltage loss of 0.341 V, and negligible hysteresis. Moreover, the optimized SnO<sub>2</sub>/TFSK-based PSCs demonstrate improved storage, humidity, and thermal stability.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 5","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In n–i–p perovskite solar cells (PSCs), the buried interface of the perovskite layer is crucial for boosting both performance and stability. Here, multifunctional small molecule potassium trifluoromethanesulfonate (TFSK) is employed as an interlayer to efficiently bridge SnO2 and the buried perovskite film, simultaneously regulating interfacial energetics and morphology. This strategy provides several advantages: (1) TFSK passivates oxygen vacancy defects and surface hydroxyl groups on SnO2, while also improving energy level alignment; (2) TFSK modification induces a loose and porous morphology in PbI2, facilitating the diffusion of ammonium salts and promoting sufficient ionic reactions to high-quality FAPbI3 films; (3) TFSK interacts strongly with perovskite through Lewis acid–base interaction (between S=O groups and uncoordinated Pb²⁺) and hydrogen bonding (between F and formamidinium cations), significantly suppressing non-radiative recombination. Consequently, the quality of both SnO2 and perovskite films is significantly improved, which greatly boosts the power conversion efficiency of small-size PSCs to 25.82%, with a high open-circuit voltage of 1.19 V, a minimal voltage loss of 0.341 V, and negligible hysteresis. Moreover, the optimized SnO2/TFSK-based PSCs demonstrate improved storage, humidity, and thermal stability.

Abstract Image

埋地界面改性降低钙钛矿太阳能电池开路电压损失,效率超过25.8%
在n-i-p钙钛矿太阳能电池(PSCs)中,钙钛矿层的埋藏界面对于提高性能和稳定性至关重要。在这里,多功能小分子三氟甲烷磺酸钾(TFSK)被用作中间层,有效地桥接SnO2和埋藏的钙钛矿膜,同时调节界面的能量和形态。该策略具有以下优点:(1)TFSK钝化了SnO2上的氧空位缺陷和表面羟基,同时改善了能级排列;(2) TFSK改性使PbI2具有疏松多孔的形貌,有利于铵盐的扩散,促进了高质量FAPbI3薄膜的充分离子反应;(3) TFSK与钙钛矿通过Lewis酸碱相互作用(S=O基团与不配位Pb 2 +之间)和氢键(F−与甲脒阳离子之间)强相互作用,显著抑制非辐射复合。因此,SnO2和钙钛矿薄膜的质量都得到了显著改善,使得小尺寸psc的功率转换效率大大提高到25.82%,开路电压高达1.19 V,电压损失最小,为0.341 V,迟回可以忽略不计。此外,优化后的基于SnO2/ tfsk的psc具有更好的存储、湿度和热稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信