{"title":"Progressive Collapse Analysis of Half-Through Truss Bridges Considering Corrosion Effects","authors":"Chih-Shiuan Lin, Simos Gerasimidis, Raimondo Betti","doi":"10.1007/s13296-025-00971-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the collapse mechanism of a half-through truss bridge, focusing on its structural reserves beyond the first failure under different damage conditions. Addressing the challenge of predicting collapse behavior in the presence of localized corrosion, a series of progressive collapse analyses were conducted using a three-dimensional finite element model. The findings reveal that the collapse mechanism is primarily governed by the instability of the upper chord system, even when the stress level is well below yielding. These results were validated using an equivalent two-dimensional upper chord system analytical solution. Furthermore, localized deterioration was shown to significantly reduce the bridge’s load-carrying capacity, potentially causing sudden catastrophic failure. The study provides a unique insight into the collapse mechanisms of corroded steel bridges, filling a critical gap not addressed in previous research. The key contributions include a comprehensive nonlinear analysis of progressive collapse, explicit modeling of localized corrosion effects, and the validation of findings using both 3D and 2D models.</p></div>","PeriodicalId":596,"journal":{"name":"International Journal of Steel Structures","volume":"25 4","pages":"959 - 973"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Steel Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13296-025-00971-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the collapse mechanism of a half-through truss bridge, focusing on its structural reserves beyond the first failure under different damage conditions. Addressing the challenge of predicting collapse behavior in the presence of localized corrosion, a series of progressive collapse analyses were conducted using a three-dimensional finite element model. The findings reveal that the collapse mechanism is primarily governed by the instability of the upper chord system, even when the stress level is well below yielding. These results were validated using an equivalent two-dimensional upper chord system analytical solution. Furthermore, localized deterioration was shown to significantly reduce the bridge’s load-carrying capacity, potentially causing sudden catastrophic failure. The study provides a unique insight into the collapse mechanisms of corroded steel bridges, filling a critical gap not addressed in previous research. The key contributions include a comprehensive nonlinear analysis of progressive collapse, explicit modeling of localized corrosion effects, and the validation of findings using both 3D and 2D models.
期刊介绍:
The International Journal of Steel Structures provides an international forum for a broad classification of technical papers in steel structural research and its applications. The journal aims to reach not only researchers, but also practicing engineers. Coverage encompasses such topics as stability, fatigue, non-linear behavior, dynamics, reliability, fire, design codes, computer-aided analysis and design, optimization, expert systems, connections, fabrications, maintenance, bridges, off-shore structures, jetties, stadiums, transmission towers, marine vessels, storage tanks, pressure vessels, aerospace, and pipelines and more.