Experimental measurement-device-independent quantum key distribution with flawed state-preparation over 300 km

IF 5.6 2区 物理与天体物理 Q1 OPTICS
Yi-Fei Lu, Yan-Yang Zhou, Yang Wang, Yu Zhou, Xiao-Lei Jiang, Xin-Hang Li, Hai-Tao Wang, Yan-Mei Zhao, Jia-Ji Li, Chun Zhou, Hong-Wei Li, Lin-Jie Zhou, Wan-Su Bao
{"title":"Experimental measurement-device-independent quantum key distribution with flawed state-preparation over 300 km","authors":"Yi-Fei Lu,&nbsp;Yan-Yang Zhou,&nbsp;Yang Wang,&nbsp;Yu Zhou,&nbsp;Xiao-Lei Jiang,&nbsp;Xin-Hang Li,&nbsp;Hai-Tao Wang,&nbsp;Yan-Mei Zhao,&nbsp;Jia-Ji Li,&nbsp;Chun Zhou,&nbsp;Hong-Wei Li,&nbsp;Lin-Jie Zhou,&nbsp;Wan-Su Bao","doi":"10.1140/epjqt/s40507-025-00408-4","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum key distribution (QKD) promises theoretically secure communication. However, it encounters challenges in implementation security and performance due to inevitable device imperfections. Since the proposal of measurement-device-independent (MDI) QKD, the critical step toward practical security is to secure QKD with imperfect sources. The source imperfections manifest as state-preparation uncertainty (SPU) in various aspects, e.g., encoding uncertainty, intensity fluctuation, and imperfect vacuum states. Here, we perform an MDI-QKD experiment and achieve both high practical security and superior performance. We address the general form of SPU and guarantee a tight estimation of the secret key rate based on the operator dominance method. We achieve secure key distribution over 303.37 km, which not only represents the farthest distance in experiments involving SPU but also considers the most SPU scenarios. Our experimental results represent a significant step toward promoting practical and secure quantum communication.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00408-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00408-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum key distribution (QKD) promises theoretically secure communication. However, it encounters challenges in implementation security and performance due to inevitable device imperfections. Since the proposal of measurement-device-independent (MDI) QKD, the critical step toward practical security is to secure QKD with imperfect sources. The source imperfections manifest as state-preparation uncertainty (SPU) in various aspects, e.g., encoding uncertainty, intensity fluctuation, and imperfect vacuum states. Here, we perform an MDI-QKD experiment and achieve both high practical security and superior performance. We address the general form of SPU and guarantee a tight estimation of the secret key rate based on the operator dominance method. We achieve secure key distribution over 303.37 km, which not only represents the farthest distance in experiments involving SPU but also considers the most SPU scenarios. Our experimental results represent a significant step toward promoting practical and secure quantum communication.

实验测量- 300公里以上有缺陷状态准备的独立于设备的量子密钥分配
量子密钥分发(QKD)在理论上保证了通信的安全性。然而,由于不可避免的设备缺陷,它在实现安全性和性能方面遇到了挑战。自测量设备无关(MDI) QKD提出以来,实现实际安全的关键一步是使用不完善的源来保护QKD。源缺陷表现为状态制备不确定性(SPU),表现为编码不确定性、强度波动、不完美真空态等。在这里,我们进行了MDI-QKD实验,实现了高实用安全性和优越的性能。我们讨论了SPU的一般形式,并保证了基于算子优势方法的密匙率的严密估计。我们实现了超过303.37 km的安全密钥分发,这不仅代表了涉及SPU的实验中最远的距离,而且考虑了大多数SPU场景。我们的实验结果是朝着促进实用和安全的量子通信迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信