Nature-to-microstructure network: A cross-domain knowledge transfer framework for steel microstructure classification

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kang Xu , Huihui Yang , Zhengming Sun , Wenwang Wu
{"title":"Nature-to-microstructure network: A cross-domain knowledge transfer framework for steel microstructure classification","authors":"Kang Xu ,&nbsp;Huihui Yang ,&nbsp;Zhengming Sun ,&nbsp;Wenwang Wu","doi":"10.1016/j.scriptamat.2025.116937","DOIUrl":null,"url":null,"abstract":"<div><div>Reliable microstructure identification underpins the control of microstructural evolution and the tailored design of mechanical performance in steels. However, conventional approaches are limited by subjectivity and inefficiency, while deep learning models often struggle with data scarcity and multiscale complexity. This study proposes Nature-to-Microstructure Network (N2M-Net) a cross-domain transfer learning (TL) framework leveraging morphological similarities between natural textures and steel microstructures. It is designed to enable accurate microstructure classification under extreme data scarcity and to enhance model generalization through morphology-guided knowledge transfer. Pretrained on 750 natural images, N2M-Net incorporates residual connections, spatial attention, and dilated Inception modules for robust multiscale feature extraction. With only 20 microscopic images, it surpassed 95.00 % accuracy within 20 epochs and reached 95.67 % final accuracy, significantly outperforming direct training. This work demonstrates a novel morphology-driven cross-domain transfer paradigm for intelligent microstructure analysis under limited data.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"270 ","pages":"Article 116937"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225003999","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reliable microstructure identification underpins the control of microstructural evolution and the tailored design of mechanical performance in steels. However, conventional approaches are limited by subjectivity and inefficiency, while deep learning models often struggle with data scarcity and multiscale complexity. This study proposes Nature-to-Microstructure Network (N2M-Net) a cross-domain transfer learning (TL) framework leveraging morphological similarities between natural textures and steel microstructures. It is designed to enable accurate microstructure classification under extreme data scarcity and to enhance model generalization through morphology-guided knowledge transfer. Pretrained on 750 natural images, N2M-Net incorporates residual connections, spatial attention, and dilated Inception modules for robust multiscale feature extraction. With only 20 microscopic images, it surpassed 95.00 % accuracy within 20 epochs and reached 95.67 % final accuracy, significantly outperforming direct training. This work demonstrates a novel morphology-driven cross-domain transfer paradigm for intelligent microstructure analysis under limited data.

Abstract Image

自然-微观结构网络:钢微观结构分类的跨领域知识转移框架
可靠的微观组织识别是控制微观组织演变和定制钢的机械性能设计的基础。然而,传统方法受到主观性和低效率的限制,而深度学习模型经常与数据稀缺性和多尺度复杂性作斗争。本研究提出了自然到微观结构网络(N2M-Net),这是一个利用自然纹理和钢微观组织之间形态相似性的跨域迁移学习(TL)框架。该模型旨在实现极端数据稀缺情况下的精确微观结构分类,并通过形态引导的知识转移增强模型泛化。N2M-Net在750张自然图像上进行了预训练,结合了残差连接、空间注意和扩展的Inception模块,用于鲁棒的多尺度特征提取。仅用20张显微图像,在20个epoch内准确率超过95.00%,最终准确率达到95.67%,明显优于直接训练。这项工作展示了一种新的形态驱动的跨域转移范式,用于有限数据下的智能微观结构分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信