First-principles prediction of mechanical, electronic, optical, and thermoelectric properties of Th3P4 for advanced functional applications

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
Z. Fadil , R. El Fdil , Hussein Sabbah , A. Jabar , S. Benyoussef , L. Bahmad , Chaitany Jayprakash Raorane , Seong Cheol Kim , S. Saadaoui
{"title":"First-principles prediction of mechanical, electronic, optical, and thermoelectric properties of Th3P4 for advanced functional applications","authors":"Z. Fadil ,&nbsp;R. El Fdil ,&nbsp;Hussein Sabbah ,&nbsp;A. Jabar ,&nbsp;S. Benyoussef ,&nbsp;L. Bahmad ,&nbsp;Chaitany Jayprakash Raorane ,&nbsp;Seong Cheol Kim ,&nbsp;S. Saadaoui","doi":"10.1016/j.cocom.2025.e01117","DOIUrl":null,"url":null,"abstract":"<div><div>A detailed study of the fundamental principles of Th<sub>3</sub>P<sub>4</sub> was carried out using DFT with GGA-PBE and mBJ potentials in order to evaluate its thermoelectric potential. The electronic band structure confirms a clear semiconductor nature with well-defined band gaps, allowing for efficient charge carrier transport. The material exhibits a high Seebeck coefficient of 210 μV/K at 300 K, indicating dominant p-type conduction and a strong thermoelectric response. Temperature-dependent analyses show an increase in electrical and thermal conductivities, which corresponds to the behavior of a p-type semiconductor. The dimensionless figure of merit (ZT) increases monotonically with temperature, reaching 0.74 at 600 K, demonstrating promising thermoelectric efficiency under high-temperature conditions. Additional calculations of the electronic specific heat and Pauli paramagnetic susceptibility confirm the thermal and electronic stability of the material. Overall, these results make Th<sub>3</sub>P<sub>4</sub> a strong candidate for high-performance thermoelectric energy conversion systems operating at high temperatures.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"44 ","pages":"Article e01117"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325001170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

A detailed study of the fundamental principles of Th3P4 was carried out using DFT with GGA-PBE and mBJ potentials in order to evaluate its thermoelectric potential. The electronic band structure confirms a clear semiconductor nature with well-defined band gaps, allowing for efficient charge carrier transport. The material exhibits a high Seebeck coefficient of 210 μV/K at 300 K, indicating dominant p-type conduction and a strong thermoelectric response. Temperature-dependent analyses show an increase in electrical and thermal conductivities, which corresponds to the behavior of a p-type semiconductor. The dimensionless figure of merit (ZT) increases monotonically with temperature, reaching 0.74 at 600 K, demonstrating promising thermoelectric efficiency under high-temperature conditions. Additional calculations of the electronic specific heat and Pauli paramagnetic susceptibility confirm the thermal and electronic stability of the material. Overall, these results make Th3P4 a strong candidate for high-performance thermoelectric energy conversion systems operating at high temperatures.
先进功能应用中Th3P4的机械、电子、光学和热电性质的第一性原理预测
利用GGA-PBE和mBJ势的DFT对Th3P4的基本原理进行了详细的研究,以评估其热电势。电子带结构证实了明确的半导体性质,具有明确的带隙,允许有效的载流子传输。在300 K时,该材料的塞贝克系数高达210 μV/K,表明该材料具有明显的p型导电和较强的热电响应。温度相关分析显示电导率和热导率增加,这与p型半导体的行为相对应。无因次优值(ZT)随温度单调增加,在600 K时达到0.74,在高温条件下显示出良好的热电效率。另外的电子比热和泡利顺磁化率的计算证实了材料的热稳定性和电子稳定性。总的来说,这些结果使Th3P4成为高温下运行的高性能热电能量转换系统的有力候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信