Deep learning adaptive Model Predictive Control of Fed-Batch Cultivations

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Niels Krausch , Martin Doff-Sotta , Mark Cannon , Peter Neubauer , Mariano Nicolas Cruz Bournazou
{"title":"Deep learning adaptive Model Predictive Control of Fed-Batch Cultivations","authors":"Niels Krausch ,&nbsp;Martin Doff-Sotta ,&nbsp;Mark Cannon ,&nbsp;Peter Neubauer ,&nbsp;Mariano Nicolas Cruz Bournazou","doi":"10.1016/j.compchemeng.2025.109344","DOIUrl":null,"url":null,"abstract":"<div><div>Bioprocesses are often characterized by nonlinear and uncertain dynamics, posing particular challenges for model predictive control (MPC) algorithms due to their computational demands when applied to nonlinear systems. Recent advances in optimal control theory have demonstrated that concepts from convex optimization, tube MPC, and differences of convex functions (DC) enable efficient, robust online process control. Our approach is based on DC decompositions of nonlinear dynamics and successive linearizations around predicted trajectories. By convexity, the linearization errors have tight bounds and can be treated as bounded disturbances within a robust tube MPC framework. We describe a systematic, data-driven method for computing DC model representations using deep neural networks with a special convex structure, and explain how the resulting MPC optimization can be solved using convex programming. For the problem of maximizing product formation in a cultivation with uncertain model parameters, we design a controller that ensures robust constraint satisfaction and allows online estimation of unknown model parameters. Our results indicate that this method is a promising solution for computationally tractable, robust MPC of bioprocesses.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"203 ","pages":"Article 109344"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425003461","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Bioprocesses are often characterized by nonlinear and uncertain dynamics, posing particular challenges for model predictive control (MPC) algorithms due to their computational demands when applied to nonlinear systems. Recent advances in optimal control theory have demonstrated that concepts from convex optimization, tube MPC, and differences of convex functions (DC) enable efficient, robust online process control. Our approach is based on DC decompositions of nonlinear dynamics and successive linearizations around predicted trajectories. By convexity, the linearization errors have tight bounds and can be treated as bounded disturbances within a robust tube MPC framework. We describe a systematic, data-driven method for computing DC model representations using deep neural networks with a special convex structure, and explain how the resulting MPC optimization can be solved using convex programming. For the problem of maximizing product formation in a cultivation with uncertain model parameters, we design a controller that ensures robust constraint satisfaction and allows online estimation of unknown model parameters. Our results indicate that this method is a promising solution for computationally tractable, robust MPC of bioprocesses.
饲料批量培养的深度学习自适应模型预测控制
生物过程通常具有非线性和不确定的动力学特征,由于其应用于非线性系统时的计算需求,对模型预测控制(MPC)算法提出了特殊的挑战。最优控制理论的最新进展表明,凸优化、管MPC和凸函数差异(DC)的概念可以实现高效、鲁棒的在线过程控制。我们的方法是基于非线性动力学的直流分解和预测轨迹周围的连续线性化。由于其凸性,线性化误差具有严格的界,可以看作是鲁棒管MPC框架内的有界扰动。我们描述了一种系统的、数据驱动的方法,用于使用具有特殊凸结构的深度神经网络来计算DC模型表示,并解释了如何使用凸规划来解决由此产生的MPC优化问题。针对具有不确定模型参数的栽培中产品形成最大化问题,设计了一种既能满足鲁棒约束又能在线估计未知模型参数的控制器。我们的结果表明,这种方法是一种很有前途的解决方案,计算易于处理,鲁棒的生物过程的MPC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信