{"title":"pELECTRE Tri: A computational framework and Python module for probabilistic ELECTRE Tri-B multiple-criteria decision-making","authors":"Christian Ghiaus","doi":"10.1016/j.simpa.2025.100781","DOIUrl":null,"url":null,"abstract":"<div><div>ELECTRE Tri-B is a sorting and classification method for multiple-criteria decision-making (MCDM) in which alternatives are assigned to categories. The categories are completely ordered and defined by base (or reference) profiles. The <em>pELECTRE Tri</em> software implements a probabilistic extension of the ELECTRE Tri-B method designed to handle uncertainty in both the decision matrix values and the base profiles delimiting the categories. Its modular architecture enables step-by-step workflows from data input to results output, ensuring flexibility and transparency in the decision-making process. Implemented as a Python module, <em>pELECTRE Tri</em> requires no installation and can be executed locally or online. The software is supported by comprehensive documentation, including tutorials, how-to guides, theoretical explanations, and a user reference manual.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"25 ","pages":"Article 100781"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963825000417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
ELECTRE Tri-B is a sorting and classification method for multiple-criteria decision-making (MCDM) in which alternatives are assigned to categories. The categories are completely ordered and defined by base (or reference) profiles. The pELECTRE Tri software implements a probabilistic extension of the ELECTRE Tri-B method designed to handle uncertainty in both the decision matrix values and the base profiles delimiting the categories. Its modular architecture enables step-by-step workflows from data input to results output, ensuring flexibility and transparency in the decision-making process. Implemented as a Python module, pELECTRE Tri requires no installation and can be executed locally or online. The software is supported by comprehensive documentation, including tutorials, how-to guides, theoretical explanations, and a user reference manual.