Data-Driven High-Throughput Screening of High-Performance Single-Atom Catalysts for Hydrogen Evolution and Hydrogen Sensing

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xiangyu Zhang, Lei Zhou, Tianshu Chu, Chao Rong, Weiwei Cheng, Jiaqing Zhu, Bowei Zhang*, Tao Wang* and Fu-Zhen Xuan*, 
{"title":"Data-Driven High-Throughput Screening of High-Performance Single-Atom Catalysts for Hydrogen Evolution and Hydrogen Sensing","authors":"Xiangyu Zhang,&nbsp;Lei Zhou,&nbsp;Tianshu Chu,&nbsp;Chao Rong,&nbsp;Weiwei Cheng,&nbsp;Jiaqing Zhu,&nbsp;Bowei Zhang*,&nbsp;Tao Wang* and Fu-Zhen Xuan*,&nbsp;","doi":"10.1021/acsaem.5c01598","DOIUrl":null,"url":null,"abstract":"<p >The exploration of high-performance catalytic materials has attracted significant attention due to their substantial economic value. However, the vast material search space and inherent limitations of conventional experimental trial-and-error methods pose significant challenges in exploring these catalytic materials. Herein, we propose a data-driven high-throughput approach for screening high-performance single-atom catalysts (SACs) suitable for hydrogen evolution reactions (HER) and hydrogen sensing applications. This methodology integrates density functional theory (DFT) calculations and a graph neural network (GNN)-based machine learning algorithm. Our results indicate that this data-driven approach effectively predicts SACs for HER and hydrogen sensing applications. This integrated framework significantly accelerates the discovery and development of high-performance catalytic materials, thereby advancing hydrogen-related technologies.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 16","pages":"12083–12091"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01598","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The exploration of high-performance catalytic materials has attracted significant attention due to their substantial economic value. However, the vast material search space and inherent limitations of conventional experimental trial-and-error methods pose significant challenges in exploring these catalytic materials. Herein, we propose a data-driven high-throughput approach for screening high-performance single-atom catalysts (SACs) suitable for hydrogen evolution reactions (HER) and hydrogen sensing applications. This methodology integrates density functional theory (DFT) calculations and a graph neural network (GNN)-based machine learning algorithm. Our results indicate that this data-driven approach effectively predicts SACs for HER and hydrogen sensing applications. This integrated framework significantly accelerates the discovery and development of high-performance catalytic materials, thereby advancing hydrogen-related technologies.

Abstract Image

数据驱动的高性能析氢和氢传感单原子催化剂的高通量筛选
高性能催化材料的开发因其巨大的经济价值而备受关注。然而,巨大的材料搜索空间和传统实验试错方法的固有局限性对探索这些催化材料构成了重大挑战。在此,我们提出了一种数据驱动的高通量方法来筛选适用于析氢反应(HER)和氢传感应用的高性能单原子催化剂(SACs)。该方法将密度泛函理论(DFT)计算和基于图神经网络(GNN)的机器学习算法相结合。我们的研究结果表明,这种数据驱动的方法有效地预测了HER和氢传感应用中的sac。这一集成框架显著加速了高性能催化材料的发现和开发,从而推动了氢相关技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信