Maria Carolina Lima Farias, Douglas Fernandes Rodrigues Alves, Uedson Pereira Jacobina, Pablo Ariel Martinez
{"title":"Ecological Process Explains the Rensch's Rule in Penaeidae (Decapoda, Dendrobranchiata)","authors":"Maria Carolina Lima Farias, Douglas Fernandes Rodrigues Alves, Uedson Pereira Jacobina, Pablo Ariel Martinez","doi":"10.1111/maec.70041","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The evolution of body size and its association with sexual size dimorphism (SSD) in species is a subject of significant debate in evolutionary ecology. Rensch's rule predicts that SSD tends to decrease with body size in species where females are the larger sex. However, to comprehend the underlying causes of SSD emergence, it is necessary to understand how ecological and evolutionary processes differentially influence males and females. In this study, we quantified the effects of geographic, biotic, and abiotic factors on body size and evaluated Rensch's rule in penaeid shrimps by examining how ecological and evolutionary processes—such as sexual selection and resource competition—affect males and females differently. We reconstructed the phylogenetic relationships within the group and analyzed the evolution of male and female body sizes in 65 species of the family Penaeidae using phylogenetic comparative models. Our findings revealed that the sexual dimorphism detected in the family follows Rensch's rule. Male size is primarily influenced by female size, with males becoming larger as females increase in size, suggesting a role for sexual selection. Our results demonstrate how multiple ecological and evolutionary forces act differentially on males and females, shaping the emergence and evolution of SSD. These findings offer new insights into the ecological and evolutionary dynamics shaping sexual size dimorphism in marine organisms, with broader implications for understanding patterns of body size evolution.</p>\n </div>","PeriodicalId":49883,"journal":{"name":"Marine Ecology-An Evolutionary Perspective","volume":"46 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Ecology-An Evolutionary Perspective","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maec.70041","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The evolution of body size and its association with sexual size dimorphism (SSD) in species is a subject of significant debate in evolutionary ecology. Rensch's rule predicts that SSD tends to decrease with body size in species where females are the larger sex. However, to comprehend the underlying causes of SSD emergence, it is necessary to understand how ecological and evolutionary processes differentially influence males and females. In this study, we quantified the effects of geographic, biotic, and abiotic factors on body size and evaluated Rensch's rule in penaeid shrimps by examining how ecological and evolutionary processes—such as sexual selection and resource competition—affect males and females differently. We reconstructed the phylogenetic relationships within the group and analyzed the evolution of male and female body sizes in 65 species of the family Penaeidae using phylogenetic comparative models. Our findings revealed that the sexual dimorphism detected in the family follows Rensch's rule. Male size is primarily influenced by female size, with males becoming larger as females increase in size, suggesting a role for sexual selection. Our results demonstrate how multiple ecological and evolutionary forces act differentially on males and females, shaping the emergence and evolution of SSD. These findings offer new insights into the ecological and evolutionary dynamics shaping sexual size dimorphism in marine organisms, with broader implications for understanding patterns of body size evolution.
期刊介绍:
Marine Ecology publishes original contributions on the structure and dynamics of marine benthic and pelagic ecosystems, communities and populations, and on the critical links between ecology and the evolution of marine organisms.
The journal prioritizes contributions elucidating fundamental aspects of species interaction and adaptation to the environment through integration of information from various organizational levels (molecules to ecosystems) and different disciplines (molecular biology, genetics, biochemistry, physiology, marine biology, natural history, geography, oceanography, palaeontology and modelling) as viewed from an ecological perspective. The journal also focuses on population genetic processes, evolution of life histories, morphological traits and behaviour, historical ecology and biogeography, macro-ecology and seascape ecology, palaeo-ecological reconstruction, and ecological changes due to introduction of new biota, human pressure or environmental change.
Most applied marine science, including fisheries biology, aquaculture, natural-products chemistry, toxicology, and local pollution studies lie outside the scope of the journal. Papers should address ecological questions that would be of interest to a worldwide readership of ecologists; papers of mostly local interest, including descriptions of flora and fauna, taxonomic descriptions, and range extensions will not be considered.