Rayanne Regina Beltrame Machado, Deysiane Lima Salvador, Carla Maria Beraldi Gomes, Amanda Beatriz Kawano Bakoshi, Tânia Ueda-Nakamura, Sueli de Oliveira Silva, Celso Vataru Nakamura, Maria Helena Sarragiotto, Danielle Lazarin-Bidóia
{"title":"Hydroxyalkyne–Bithiophene Derivatives: Synthesis and Antileishmanial Activity","authors":"Rayanne Regina Beltrame Machado, Deysiane Lima Salvador, Carla Maria Beraldi Gomes, Amanda Beatriz Kawano Bakoshi, Tânia Ueda-Nakamura, Sueli de Oliveira Silva, Celso Vataru Nakamura, Maria Helena Sarragiotto, Danielle Lazarin-Bidóia","doi":"10.1111/cbdd.70167","DOIUrl":null,"url":null,"abstract":"<p>Leishmaniasis is one of the most important neglected tropical diseases, prevalent in underdeveloped or developing countries, and new pharmacological agents for this disease are urgently needed. In this study, thiophene derivatives based on the natural product 5′-methyl-(5-[4-acetoxy-1-butynyl])-2,2′-bithiophene were synthesized and evaluated against promastigote forms of <i>Leishmania amazonensis</i>. The bithiophene <b>BT-1</b> was the most potent and selective synthetic compound toward the parasites, exhibiting IC<sub>50</sub> of 23.2 μM against promastigotes and CC<sub>50</sub> of 216.5 μM against macrophages, and its mechanism of action was determined through biochemical and ultrastructural analyses. An accumulation of lipid bodies, loss of cellular content, increased reactive oxygen species production and lipid peroxidation, damage to the plasma membrane, and mitochondrial depolarization were observed in <b>BT-1</b>-treated parasites. The results indicated that the death of <i>L. amazonensis</i> induced by <b>BT-1</b> occurred via destabilizing the parasite's redox homeostasis. Our results also showed that the synthesis based on the natural compound scaffold consisted of useful strategies to obtain new synthetic antileishmanial compounds.</p>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"106 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cbdd.70167","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70167","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Leishmaniasis is one of the most important neglected tropical diseases, prevalent in underdeveloped or developing countries, and new pharmacological agents for this disease are urgently needed. In this study, thiophene derivatives based on the natural product 5′-methyl-(5-[4-acetoxy-1-butynyl])-2,2′-bithiophene were synthesized and evaluated against promastigote forms of Leishmania amazonensis. The bithiophene BT-1 was the most potent and selective synthetic compound toward the parasites, exhibiting IC50 of 23.2 μM against promastigotes and CC50 of 216.5 μM against macrophages, and its mechanism of action was determined through biochemical and ultrastructural analyses. An accumulation of lipid bodies, loss of cellular content, increased reactive oxygen species production and lipid peroxidation, damage to the plasma membrane, and mitochondrial depolarization were observed in BT-1-treated parasites. The results indicated that the death of L. amazonensis induced by BT-1 occurred via destabilizing the parasite's redox homeostasis. Our results also showed that the synthesis based on the natural compound scaffold consisted of useful strategies to obtain new synthetic antileishmanial compounds.
期刊介绍:
Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.