{"title":"Treatment of Inborn Errors by Product Replacement: The Example of Inborn Errors of Bile Acid Synthesis","authors":"Peter T. Clayton, Rohit Hirachan, Elaine Murphy","doi":"10.1002/jimd.70081","DOIUrl":null,"url":null,"abstract":"<p>Many inborn errors of metabolism affect pathways involved in the synthesis of a metabolite that has an important biochemical or physiological function, and adverse effects of the disorder can be attributed to the lack of this metabolite. Thus, there is the opportunity for treatment by ‘product replacement’. One of the disorders in the pathways for the synthesis of bile acids from cholesterol, 3β-hydroxy-Δ5-C27-steroid dehydrogenase deficiency, causes cholestatic liver disease in infancy that can be treated very effectively with chenodeoxycholic acid (CDCA) and/or cholic acid (CA). There are several other enzyme deficiencies that can cause liver disease in infancy that improve with CDCA or CA or both (alongside a reduction of abnormal bile acids or alcohols); however, individuals with the same gene variant(s) may remain asymptomatic or have transient liver dysfunction that resolves spontaneously. In some disorders, the more usual presentation is with neurological disease later in childhood or in adolescence or adult life, for example, cerebrotendinous xanthomatosis (CTX), α-methylacyl-CoA racemase deficiency, and oxysterol 7α-hydroxylase deficiency. Treatment with CDCA has been dramatically effective in the neurological disease of CTX. In the disorders of peroxisome biogenesis, liver disease is a part of the clinical picture although neurological symptoms tend to be predominant. Treatment with CDCA and CA (or CA alone) leads to a reduction in the levels of C27 bile acids. Some trials suggest this treatment leads to significant improvement in clinical status and liver function tests; others do not. Defects in individual peroxisomal enzymes and transporters vary in their clinical presentations. Treatment of acyl-CoA oxidase 2 deficiency with ursodeoxycholic acid is discussed.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":"48 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jimd.70081","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inherited Metabolic Disease","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jimd.70081","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Many inborn errors of metabolism affect pathways involved in the synthesis of a metabolite that has an important biochemical or physiological function, and adverse effects of the disorder can be attributed to the lack of this metabolite. Thus, there is the opportunity for treatment by ‘product replacement’. One of the disorders in the pathways for the synthesis of bile acids from cholesterol, 3β-hydroxy-Δ5-C27-steroid dehydrogenase deficiency, causes cholestatic liver disease in infancy that can be treated very effectively with chenodeoxycholic acid (CDCA) and/or cholic acid (CA). There are several other enzyme deficiencies that can cause liver disease in infancy that improve with CDCA or CA or both (alongside a reduction of abnormal bile acids or alcohols); however, individuals with the same gene variant(s) may remain asymptomatic or have transient liver dysfunction that resolves spontaneously. In some disorders, the more usual presentation is with neurological disease later in childhood or in adolescence or adult life, for example, cerebrotendinous xanthomatosis (CTX), α-methylacyl-CoA racemase deficiency, and oxysterol 7α-hydroxylase deficiency. Treatment with CDCA has been dramatically effective in the neurological disease of CTX. In the disorders of peroxisome biogenesis, liver disease is a part of the clinical picture although neurological symptoms tend to be predominant. Treatment with CDCA and CA (or CA alone) leads to a reduction in the levels of C27 bile acids. Some trials suggest this treatment leads to significant improvement in clinical status and liver function tests; others do not. Defects in individual peroxisomal enzymes and transporters vary in their clinical presentations. Treatment of acyl-CoA oxidase 2 deficiency with ursodeoxycholic acid is discussed.
期刊介绍:
The Journal of Inherited Metabolic Disease (JIMD) is the official journal of the Society for the Study of Inborn Errors of Metabolism (SSIEM). By enhancing communication between workers in the field throughout the world, the JIMD aims to improve the management and understanding of inherited metabolic disorders. It publishes results of original research and new or important observations pertaining to any aspect of inherited metabolic disease in humans and higher animals. This includes clinical (medical, dental and veterinary), biochemical, genetic (including cytogenetic, molecular and population genetic), experimental (including cell biological), methodological, theoretical, epidemiological, ethical and counselling aspects. The JIMD also reviews important new developments or controversial issues relating to metabolic disorders and publishes reviews and short reports arising from the Society''s annual symposia. A distinction is made between peer-reviewed scientific material that is selected because of its significance for other professionals in the field and non-peer- reviewed material that aims to be important, controversial, interesting or entertaining (“Extras”).