Thermal evolution of quantum steering, Bell nonlocality, and entropic uncertainty in a Heitler–London coupled spin system

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
M. Oumennana, M. Mansour, Hanin Ardah, Abdel-Haleem Abdel-Aty
{"title":"Thermal evolution of quantum steering, Bell nonlocality, and entropic uncertainty in a Heitler–London coupled spin system","authors":"M. Oumennana,&nbsp;M. Mansour,&nbsp;Hanin Ardah,&nbsp;Abdel-Haleem Abdel-Aty","doi":"10.1007/s11128-025-04908-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the behavior of quantum steering, Bell nonlocality, and the quantum-memory-assisted entropic uncertainty relation (QMA-EUR) in a bipartite Heisenberg spin system, incorporating Heitler–London (HL) coupling, Dzyaloshinsky–Moriya (DM) interaction, and an external magnetic field <i>B</i>. The HL coupling is essential in providing a framework for electron interactions, taking into account wave function overlap and exchange interactions, which are crucial for describing spin-based phenomena. The analysis investigates how these quantum properties are influenced by various factors, including relative spin–spin distance <i>R</i>, temperature <i>T</i>, and additional system parameters at thermal equilibrium. The results highlight key trends: an increase in temperature <i>T</i> leads to a reduction in quantum resources, while simultaneously increasing QMA-EUR. Bell nonlocality and quantum steering exhibit similar temperature-dependent behavior, and their responses to variations in the relative separation between spins <i>R</i> diverge from those of QMA-EUR. Additionally, strong magnetic fields are shown to weaken quantum resources. However, through careful optimization of parameters such as <i>R</i>, <i>T</i>, <i>B</i>, and the strength of the DM interaction, it is possible to enhance Bell nonlocality and quantum steering, while minimizing QMA-EUR. These insights are valuable for advancing quantum technologies, particularly those relying on spin-based quantum systems.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04908-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the behavior of quantum steering, Bell nonlocality, and the quantum-memory-assisted entropic uncertainty relation (QMA-EUR) in a bipartite Heisenberg spin system, incorporating Heitler–London (HL) coupling, Dzyaloshinsky–Moriya (DM) interaction, and an external magnetic field B. The HL coupling is essential in providing a framework for electron interactions, taking into account wave function overlap and exchange interactions, which are crucial for describing spin-based phenomena. The analysis investigates how these quantum properties are influenced by various factors, including relative spin–spin distance R, temperature T, and additional system parameters at thermal equilibrium. The results highlight key trends: an increase in temperature T leads to a reduction in quantum resources, while simultaneously increasing QMA-EUR. Bell nonlocality and quantum steering exhibit similar temperature-dependent behavior, and their responses to variations in the relative separation between spins R diverge from those of QMA-EUR. Additionally, strong magnetic fields are shown to weaken quantum resources. However, through careful optimization of parameters such as R, T, B, and the strength of the DM interaction, it is possible to enhance Bell nonlocality and quantum steering, while minimizing QMA-EUR. These insights are valuable for advancing quantum technologies, particularly those relying on spin-based quantum systems.

Heitler-London耦合自旋系统中量子导向的热演化、Bell非定域性和熵不确定性
本研究探讨了二部海森堡自旋系统中包含Heitler-London (HL)耦合、Dzyaloshinsky-Moriya (DM)相互作用和外部磁场b的量子导向、Bell非定域和量子记忆辅助熵不确定性关系(QMA-EUR)的行为。HL耦合在提供电子相互作用框架、考虑波函数重叠和交换相互作用方面至关重要。这对于描述基于自旋的现象至关重要。分析研究了这些量子特性如何受到各种因素的影响,包括相对自旋-自旋距离R、温度T和热平衡时的附加系统参数。结果突出了关键趋势:温度T的增加导致量子资源的减少,同时增加QMA-EUR。Bell非定域性和量子导向表现出相似的温度依赖行为,它们对自旋之间相对距离R变化的响应不同于QMA-EUR。此外,强磁场也会削弱量子资源。然而,通过仔细优化R、T、B等参数和DM相互作用的强度,有可能增强贝尔非局域性和量子转向,同时最小化QMA-EUR。这些见解对于推进量子技术非常有价值,特别是那些依赖于基于自旋的量子系统的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信