On a weak periodic internal layer in a problem with a discontinuous reaction

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
E. I. Nikulin, A. V. Karamyshev
{"title":"On a weak periodic internal layer in a problem with a discontinuous reaction","authors":"E. I. Nikulin,&nbsp;A. V. Karamyshev","doi":"10.1134/S0040577925080069","DOIUrl":null,"url":null,"abstract":"<p> We consider a boundary value problem with a time-periodic condition for an equation of “reaction–advection–diffusion” type with weak smooth advection and with reaction discontinuous in the spatial coordinate. We construct the asymptotics, prove the existence, and investigate the stability of periodic solutions with the constructed asymptotics and with a weak internal layer formed near the discontinuity point. To construct the asymptotics, we use the Vasil’eva method; to justify the existence of the solution, the asymptotic method of differential inequalities; and to study stability, the method of contracting barriers. We show that such a solution, as a solution of the corresponding initial-boundary value problem, is asymptotically Lyapunov stable. We determine the stability domain of a finite (not asymptotically small) width for such a solution and prove that the solution of the periodic problem is unique in this domain. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"224 2","pages":"1414 - 1427"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925080069","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a boundary value problem with a time-periodic condition for an equation of “reaction–advection–diffusion” type with weak smooth advection and with reaction discontinuous in the spatial coordinate. We construct the asymptotics, prove the existence, and investigate the stability of periodic solutions with the constructed asymptotics and with a weak internal layer formed near the discontinuity point. To construct the asymptotics, we use the Vasil’eva method; to justify the existence of the solution, the asymptotic method of differential inequalities; and to study stability, the method of contracting barriers. We show that such a solution, as a solution of the corresponding initial-boundary value problem, is asymptotically Lyapunov stable. We determine the stability domain of a finite (not asymptotically small) width for such a solution and prove that the solution of the periodic problem is unique in this domain.

不连续反应问题中的弱周期内层
考虑具有弱平滑平流和反应不连续空间坐标的“反应-平流-扩散”型方程的边值问题。构造渐近点,证明渐近点的存在性,并利用构造渐近点和在不连续点附近形成一个弱内层,研究周期解的稳定性。为了构造渐近性,我们使用Vasil 'eva方法;为了证明解的存在性,采用微分不等式的渐近方法;并对稳定性、收缩障碍的方法进行了研究。我们证明了这种解作为相应的初边值问题的解是渐近Lyapunov稳定的。我们确定了这样一个解的有限宽度(不是渐近小)的稳定定义域,并证明了周期问题的解在这个定义域内是唯一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信