Yuxi Zhao;Vicente Casares-Giner;Vicent Pla;Luis Guijarro;Iztok Humar;Yi Zhong;Xiaohu Ge
{"title":"Energy-Based Cell Association in Nonuniform Renewable Energy-Powered Cellular Networks: Analysis and Optimization of Carbon Efficiency","authors":"Yuxi Zhao;Vicente Casares-Giner;Vicent Pla;Luis Guijarro;Iztok Humar;Yi Zhong;Xiaohu Ge","doi":"10.1109/TNSE.2025.3565065","DOIUrl":null,"url":null,"abstract":"The increasing global push for carbon reduction highlights the importance of integrating renewable energy into the supply chain of cellular networks. However, due to the stochastic nature of renewable energy generation and the uneven load distribution across base stations, the utilization rate of renewable energy remains low. To address these challenges, this paper investigates the trade-off between carbon emissions and downlink throughput in cellular networks, offering insights into optimizing both network performance and sustainability. The renewable energy state of base station batteries and the number of occupied channels are modeled as a quasi-birth-death process. We construct models for the probability of channel blocking, average successful transmission probability for users, downlink throughput, carbon emissions, and carbon efficiency based on stochastic geometry. Based on these analyses, an energy-based cell association scheme is proposed to optimize the carbon efficiency of cellular networks. The results show that, compared to the closest cell association scheme, the energy-based cell association scheme is capable of reducing the carbon emissions of the network by 13.0% and improving the carbon efficiency by 11.3%.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 5","pages":"3744-3757"},"PeriodicalIF":7.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10979426/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing global push for carbon reduction highlights the importance of integrating renewable energy into the supply chain of cellular networks. However, due to the stochastic nature of renewable energy generation and the uneven load distribution across base stations, the utilization rate of renewable energy remains low. To address these challenges, this paper investigates the trade-off between carbon emissions and downlink throughput in cellular networks, offering insights into optimizing both network performance and sustainability. The renewable energy state of base station batteries and the number of occupied channels are modeled as a quasi-birth-death process. We construct models for the probability of channel blocking, average successful transmission probability for users, downlink throughput, carbon emissions, and carbon efficiency based on stochastic geometry. Based on these analyses, an energy-based cell association scheme is proposed to optimize the carbon efficiency of cellular networks. The results show that, compared to the closest cell association scheme, the energy-based cell association scheme is capable of reducing the carbon emissions of the network by 13.0% and improving the carbon efficiency by 11.3%.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.