A Physics-Informed Neural Network (PINN) framework for generic bioreactor modelling

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Monesh kumar Thirugnanasambandam , José Pinto , Ekaterina Moskovkina , Rafael S. Costa , Rui Oliveira
{"title":"A Physics-Informed Neural Network (PINN) framework for generic bioreactor modelling","authors":"Monesh kumar Thirugnanasambandam ,&nbsp;José Pinto ,&nbsp;Ekaterina Moskovkina ,&nbsp;Rafael S. Costa ,&nbsp;Rui Oliveira","doi":"10.1016/j.compchemeng.2025.109354","DOIUrl":null,"url":null,"abstract":"<div><div>Many previous studies have explored hybrid semiparametric models merging Artificial Neural Networks (ANNs) with mechanistic models for bioprocess applications. More recently, Physics-Informed Neural Networks (PINNs) have emerged as promising alternatives. Both approaches seek to incorporate prior knowledge in ANN models, thereby decreasing data dependency whilst improving model transparency and generalization capacity. In the case of hybrid semiparametric modelling, the mechanistic equations are hard coded directly into the model structure in interaction with the ANN. In the case of PINNs, the same mechanistic equations must be “learned” by the ANN structure during the training. This study evaluates a dual-ANN PINN structure for generic bioreactor problems that decouples state and reaction kinetics parameterization. Furthermore, the dual-ANN PINN is benchmarked against the general hybrid semiparametric bioreactor model under comparable prior knowledge scenarios across 2 case studies. Our findings show that the dual-ANN PINN can level the prediction accuracy of hybrid semiparametric models for simple problems. However, its performance degrades significantly when applied to extended temporal extrapolation or to complex problems involving high-dimensional process states subject to time-varying control inputs. The latter is primarily due to the more complex multi-objective training of the dual-ANN PINN structure and to physics-based extrapolation errors beyond the training domain.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"203 ","pages":"Article 109354"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425003564","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Many previous studies have explored hybrid semiparametric models merging Artificial Neural Networks (ANNs) with mechanistic models for bioprocess applications. More recently, Physics-Informed Neural Networks (PINNs) have emerged as promising alternatives. Both approaches seek to incorporate prior knowledge in ANN models, thereby decreasing data dependency whilst improving model transparency and generalization capacity. In the case of hybrid semiparametric modelling, the mechanistic equations are hard coded directly into the model structure in interaction with the ANN. In the case of PINNs, the same mechanistic equations must be “learned” by the ANN structure during the training. This study evaluates a dual-ANN PINN structure for generic bioreactor problems that decouples state and reaction kinetics parameterization. Furthermore, the dual-ANN PINN is benchmarked against the general hybrid semiparametric bioreactor model under comparable prior knowledge scenarios across 2 case studies. Our findings show that the dual-ANN PINN can level the prediction accuracy of hybrid semiparametric models for simple problems. However, its performance degrades significantly when applied to extended temporal extrapolation or to complex problems involving high-dimensional process states subject to time-varying control inputs. The latter is primarily due to the more complex multi-objective training of the dual-ANN PINN structure and to physics-based extrapolation errors beyond the training domain.
通用生物反应器建模的物理信息神经网络(PINN)框架
许多先前的研究已经探索了混合半参数模型,将人工神经网络(ann)与生物过程应用的机制模型相结合。最近,物理信息神经网络(pinn)作为一种很有前途的替代方案出现了。这两种方法都试图将先验知识纳入人工神经网络模型,从而减少数据依赖性,同时提高模型透明度和泛化能力。在混合半参数建模的情况下,机制方程直接硬编码到模型结构中,与人工神经网络相互作用。在pinn的情况下,在训练过程中,ANN结构必须“学习”相同的机制方程。本研究评估了用于解耦状态和反应动力学参数化的通用生物反应器问题的双ann PINN结构。此外,在2个案例研究的可比较的先验知识情景下,双ann PINN与一般混合半参数生物反应器模型进行了基准测试。我们的研究结果表明,对于简单的问题,双神经网络的预测精度可以达到混合半参数模型的水平。然而,当应用于扩展时间外推或涉及受时变控制输入的高维过程状态的复杂问题时,其性能显着下降。后者主要是由于双神经网络PINN结构的多目标训练更为复杂,以及超出训练域的基于物理的外推误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信