Soonjoung Kim , Hasan F. Alnaser , Scott Keeney , Hajime Murakami
{"title":"Insight into meiotic DNA end resection: Mechanisms and regulation","authors":"Soonjoung Kim , Hasan F. Alnaser , Scott Keeney , Hajime Murakami","doi":"10.1016/j.dnarep.2025.103886","DOIUrl":null,"url":null,"abstract":"<div><div>Meiosis generates reproductive cells with a reduced genome complement, with most species using homologous recombination to promote accurate meiotic chromosome segregation and to generate genetic diversity among offspring. A critical step in homologous recombination is DNA end resection, in which DNA double-strand breaks (DSBs) are processed by nucleases to yield the 3′ single-stranded DNA (ssDNA) needed for homology search and strand invasion. DSB resection in nonmeiotic contexts has been extensively studied, but meiotic resection is less well understood. We provide here a review of studies elucidating the mechanism and regulation of resection during meiosis, covering similarities and differences from resection in mitotically dividing cells. The nucleases that carry out resection are discussed, along with resection-modulating factors such as DNA damage signaling and chromatin structure. We focus on the budding yeast <em>Saccharomyces cerevisiae</em> and on mouse, for which the most information is currently available, but also describe studies in other species that point to evolutionary conservation or divergence in this key process needed for genome integrity in the germline.</div></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"153 ","pages":"Article 103886"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786425000825","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Meiosis generates reproductive cells with a reduced genome complement, with most species using homologous recombination to promote accurate meiotic chromosome segregation and to generate genetic diversity among offspring. A critical step in homologous recombination is DNA end resection, in which DNA double-strand breaks (DSBs) are processed by nucleases to yield the 3′ single-stranded DNA (ssDNA) needed for homology search and strand invasion. DSB resection in nonmeiotic contexts has been extensively studied, but meiotic resection is less well understood. We provide here a review of studies elucidating the mechanism and regulation of resection during meiosis, covering similarities and differences from resection in mitotically dividing cells. The nucleases that carry out resection are discussed, along with resection-modulating factors such as DNA damage signaling and chromatin structure. We focus on the budding yeast Saccharomyces cerevisiae and on mouse, for which the most information is currently available, but also describe studies in other species that point to evolutionary conservation or divergence in this key process needed for genome integrity in the germline.
期刊介绍:
DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.
DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.