C. Edson Utazi , Ortis Yankey , Somnath Chaudhuri , Iyanuloluwa D. Olowe , M. Carolina Danovaro-Holliday , Attila N. Lazar , Andrew J. Tatem
{"title":"Geostatistical and machine learning approaches for high-resolution mapping of vaccination coverage","authors":"C. Edson Utazi , Ortis Yankey , Somnath Chaudhuri , Iyanuloluwa D. Olowe , M. Carolina Danovaro-Holliday , Attila N. Lazar , Andrew J. Tatem","doi":"10.1016/j.sste.2025.100744","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, there has been a growing interest in the production of high-resolution maps of vaccination coverage. These maps have been useful for uncovering geographic inequities in coverage and improving targeting of interventions to reach marginalized populations. Different methodological approaches have been developed for producing these maps using mostly geolocated household survey data and geospatial covariate information. However, it remains unclear how much the predicted coverage maps produced by the various methods differ, and which methods yield more reliable estimates. Here, we explore the predictive performance of these methods and resulting implications for spatial prioritization to fill this gap. Using Nigeria Demographic and Health Survey as a case study, we generate 1 × 1 km and district level maps of indicators of vaccination coverage using geostatistical, machine learning (ML) and hybrid methods and evaluate predictive performance via cross-validation. Our results show similar predictive performance for five of the seven methods investigated, although two geostatistical approaches are the best performing methods. The worst-performing methods are two ML approaches. We find marked differences in spatial prioritization using these methods, which could potentially result in missing important underserved populations, although broad similarities exist. Our study can help guide map production for other health and development metrics.</div></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"54 ","pages":"Article 100744"},"PeriodicalIF":1.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584525000358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, there has been a growing interest in the production of high-resolution maps of vaccination coverage. These maps have been useful for uncovering geographic inequities in coverage and improving targeting of interventions to reach marginalized populations. Different methodological approaches have been developed for producing these maps using mostly geolocated household survey data and geospatial covariate information. However, it remains unclear how much the predicted coverage maps produced by the various methods differ, and which methods yield more reliable estimates. Here, we explore the predictive performance of these methods and resulting implications for spatial prioritization to fill this gap. Using Nigeria Demographic and Health Survey as a case study, we generate 1 × 1 km and district level maps of indicators of vaccination coverage using geostatistical, machine learning (ML) and hybrid methods and evaluate predictive performance via cross-validation. Our results show similar predictive performance for five of the seven methods investigated, although two geostatistical approaches are the best performing methods. The worst-performing methods are two ML approaches. We find marked differences in spatial prioritization using these methods, which could potentially result in missing important underserved populations, although broad similarities exist. Our study can help guide map production for other health and development metrics.