Artificial aeration plays a pivotal role in the bioleaching of sulfide ores by influencing microbial activity, oxygen supply, and mineral dissolution kinetics. However, the quantitative relationship between aeration rate and leaching efficiency for low-grade copper sulfide ores, particularly under column leaching conditions, remains insufficiently characterized.
RESULTS
Through systematic column leaching experiments conducted at 30–45 °C with aeration rates ranging from 0 to 150 L h−1, we observed that the Cu recovery rate throughout bioleaching was not entirely positively correlated with the aeration rate. Column leaching performance at 95 L h−1 aeration rate is comparable to that at 110–150 L h−1 in the initial leaching phase. By the end of leaching, Cu recovery rate reaches 80.1% at 150 L h−1 aeration rate, which is an increase of 11.4% from the 68.7% achieved without forced aeration. Analysis of the leaching mechanism indicates that artificial aeration (>95 L h−1) enhances the positive cycle among factors such as leaching microorganisms, Fe2+ and Fe3+, while also improving the temperature and pore structure of the leaching system.
期刊介绍:
Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.