{"title":"Co-utilization of corncob hydrolysate and fermentation wastewater for eicosapentaenoic acid production by Schizochytrium sp.","authors":"Ying Ou, Yu Qin, Yiyun Wang, Junya Liu, Hailin Yang, Xueshen Zhu","doi":"10.1186/s13068-025-02692-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Oleaginous microorganisms are promising lipid producers that accumulate an abundance of lipids from different carbon sources. However, the cost of the carbon source in the culture medium is a significant component of the total substrate cost. In this study, lignocellulose from corncob hydrolysate (CBH) was used instead of glucose as a low-cost medium for <i>Schizochytrium</i> fermentation.</p><h3>Results</h3><p>Eicosapentaenoic acid (EPA) content was 7.31%, after 110 h of fermentation, when the total sugar concentration of CBH was 80 g/L, which was greater than that of pure glucose medium. Replacing 40% of freshwater with fermentation wastewater (FW) resulted in biomass, lipid titer, and EPA titer of 42.16 g/L, 23.05 g/L, and 1.72 g/L, respectively. Compared with the initial CBH medium, the lipid and EPA titers in the 7.5-L bioreactor employing the FW recycling strategy using CBH as a carbon source increased by 12.10% and 9.26%, respectively.</p><h3>Conclusions</h3><p>Corncob hydrolysate can be used as a potential low-cost and effective carbon source for EPA production by <i>Schizochytrium</i> sp. The recycling of FW provides a reference for reducing freshwater consumption and environmental pollution and realizing green and economic recycling fermentation.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02692-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02692-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Oleaginous microorganisms are promising lipid producers that accumulate an abundance of lipids from different carbon sources. However, the cost of the carbon source in the culture medium is a significant component of the total substrate cost. In this study, lignocellulose from corncob hydrolysate (CBH) was used instead of glucose as a low-cost medium for Schizochytrium fermentation.
Results
Eicosapentaenoic acid (EPA) content was 7.31%, after 110 h of fermentation, when the total sugar concentration of CBH was 80 g/L, which was greater than that of pure glucose medium. Replacing 40% of freshwater with fermentation wastewater (FW) resulted in biomass, lipid titer, and EPA titer of 42.16 g/L, 23.05 g/L, and 1.72 g/L, respectively. Compared with the initial CBH medium, the lipid and EPA titers in the 7.5-L bioreactor employing the FW recycling strategy using CBH as a carbon source increased by 12.10% and 9.26%, respectively.
Conclusions
Corncob hydrolysate can be used as a potential low-cost and effective carbon source for EPA production by Schizochytrium sp. The recycling of FW provides a reference for reducing freshwater consumption and environmental pollution and realizing green and economic recycling fermentation.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis