TSFD-Net: Two-Stage Feature Decoupling Network for Task and Parameter Discrepancies in RSOD

IF 4.4
Xinghui Song;Chunyi Chen;Gen Li;Yanan Liu;Donglin Jing;Jun Peng
{"title":"TSFD-Net: Two-Stage Feature Decoupling Network for Task and Parameter Discrepancies in RSOD","authors":"Xinghui Song;Chunyi Chen;Gen Li;Yanan Liu;Donglin Jing;Jun Peng","doi":"10.1109/LGRS.2025.3597597","DOIUrl":null,"url":null,"abstract":"Deep learning excels in natural image object detection, but remote sensing images face challenges like multidirectional objects and neighborhood interference. Existing methods use shared features for classification and regression, causing task interference. Classification needs translation/rotation-invariant features, while regression requires translation/rotation-equivariant features. Additionally, regression parameters (e.g., center, shape, and angle) demand distinct feature properties. To address this, we propose TSFD-Net, featuring: 1) task differential decoupling module (TDDM): decouples task-specific features via parallel CNN-Transformer branches, and 2) parameter differential decoupling module (PDDM): designs specialized regressors for distinct parameters (e.g., angle versus center/shape). Together, TDDM and PDDM form the two-stage feature decoupling (TSFD) structure. We further introduce dynamic cascade activation masks (DCAMs), leveraging bounding box feedback to enhance target focus and suppress neighborhood noise. TSFD network (TSFD-Net) achieves state-of-the-art results on DOTA-v1.0 (81.37% mAP), validating its efficacy.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11122464/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning excels in natural image object detection, but remote sensing images face challenges like multidirectional objects and neighborhood interference. Existing methods use shared features for classification and regression, causing task interference. Classification needs translation/rotation-invariant features, while regression requires translation/rotation-equivariant features. Additionally, regression parameters (e.g., center, shape, and angle) demand distinct feature properties. To address this, we propose TSFD-Net, featuring: 1) task differential decoupling module (TDDM): decouples task-specific features via parallel CNN-Transformer branches, and 2) parameter differential decoupling module (PDDM): designs specialized regressors for distinct parameters (e.g., angle versus center/shape). Together, TDDM and PDDM form the two-stage feature decoupling (TSFD) structure. We further introduce dynamic cascade activation masks (DCAMs), leveraging bounding box feedback to enhance target focus and suppress neighborhood noise. TSFD network (TSFD-Net) achieves state-of-the-art results on DOTA-v1.0 (81.37% mAP), validating its efficacy.
TSFD-Net: RSOD中任务和参数差异的两阶段特征解耦网络
深度学习在自然图像目标检测方面表现优异,但遥感图像面临多向目标和邻域干扰等挑战。现有方法使用共享特征进行分类和回归,导致任务干扰。分类需要平移/旋转不变特征,回归需要平移/旋转等变特征。此外,回归参数(例如,中心、形状和角度)需要不同的特征属性。为了解决这个问题,我们提出了TSFD-Net,其特点是:1)任务微分解耦模块(TDDM):通过并行CNN-Transformer分支解耦特定于任务的特征,以及2)参数微分解耦模块(PDDM):为不同参数(例如,角度与中心/形状)设计专门的回归器。TDDM和PDDM共同构成了两阶段特征解耦(TSFD)结构。我们进一步引入动态级联激活掩模(DCAMs),利用边界盒反馈来增强目标聚焦并抑制邻域噪声。TSFD网络(TSFD- net)在DOTA-v1.0 (81.37% mAP)上取得了最先进的结果,验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信