Collaborative surgical instrument segmentation for monocular depth estimation in minimally invasive surgery

IF 11.8 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xue Li , Wenxin Chen , Xingguang Duan , Xiaoyi Gu , Changsheng Li
{"title":"Collaborative surgical instrument segmentation for monocular depth estimation in minimally invasive surgery","authors":"Xue Li ,&nbsp;Wenxin Chen ,&nbsp;Xingguang Duan ,&nbsp;Xiaoyi Gu ,&nbsp;Changsheng Li","doi":"10.1016/j.media.2025.103765","DOIUrl":null,"url":null,"abstract":"<div><div>Depth estimation is essential for image-guided surgical procedures, particularly in minimally invasive environments where accurate 3D perception is critical. This paper proposes a two-stage self-supervised monocular depth estimation framework that incorporates instrument segmentation as a task-level prior to enhance spatial understanding. In the first stage, segmentation and depth estimation models are trained separately on the RIS, SCARED datasets to capture task-specific representations. In the second stage, segmentation masks predicted on the dVPN dataset are fused with RGB inputs to guide the refinement of depth prediction.</div><div>The framework employs a shared encoder and multiple decoders to enable efficient feature sharing across tasks. Comprehensive experiments on the RIS, SCARED, dVPN, and SERV-CT datasets validate the effectiveness and generalizability of the proposed approach. The results demonstrate that segmentation-aware depth estimation improves geometric reasoning in challenging surgical scenes, including those with occlusions, specularities regions.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"107 ","pages":"Article 103765"},"PeriodicalIF":11.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525003111","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Depth estimation is essential for image-guided surgical procedures, particularly in minimally invasive environments where accurate 3D perception is critical. This paper proposes a two-stage self-supervised monocular depth estimation framework that incorporates instrument segmentation as a task-level prior to enhance spatial understanding. In the first stage, segmentation and depth estimation models are trained separately on the RIS, SCARED datasets to capture task-specific representations. In the second stage, segmentation masks predicted on the dVPN dataset are fused with RGB inputs to guide the refinement of depth prediction.
The framework employs a shared encoder and multiple decoders to enable efficient feature sharing across tasks. Comprehensive experiments on the RIS, SCARED, dVPN, and SERV-CT datasets validate the effectiveness and generalizability of the proposed approach. The results demonstrate that segmentation-aware depth estimation improves geometric reasoning in challenging surgical scenes, including those with occlusions, specularities regions.

Abstract Image

Abstract Image

微创手术中用于单眼深度估计的协同手术器械分割
深度估计对于图像引导的外科手术至关重要,特别是在微创环境中,准确的3D感知至关重要。本文提出了一个两阶段的自监督单目深度估计框架,该框架将仪器分割作为任务级别,以增强空间理解。在第一阶段,分割和深度估计模型分别在RIS、SCARED数据集上进行训练,以捕获特定于任务的表示。第二阶段,将在dVPN数据集上预测的分割掩码与RGB输入融合,指导深度预测的细化。该框架采用共享编码器和多个解码器来实现跨任务的高效特性共享。RIS、SCARED、dVPN和SERV-CT数据集上的综合实验验证了该方法的有效性和可泛化性。结果表明,分割感知深度估计提高了具有挑战性的手术场景的几何推理,包括那些有闭塞,镜面区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信