A novel circle-packing NLP model for offshore wind farm layout and cable optimization

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Angel Francisco Negrete-Romero , Efraín Quiroz Pérez , Dulce Celeste López-Díaz , Julio A. de Lira-Flores , José María Ponce-Ortega
{"title":"A novel circle-packing NLP model for offshore wind farm layout and cable optimization","authors":"Angel Francisco Negrete-Romero ,&nbsp;Efraín Quiroz Pérez ,&nbsp;Dulce Celeste López-Díaz ,&nbsp;Julio A. de Lira-Flores ,&nbsp;José María Ponce-Ortega","doi":"10.1016/j.compchemeng.2025.109346","DOIUrl":null,"url":null,"abstract":"<div><div>The proper siting of wind turbines and cable routing in offshore wind energy systems can be used to prevent wake effects and electrical losses. This study adopts a continuous-domain optimization model based on nonlinear programming for offshore wind farms' simultaneous layout and electrical placement. In particular, it uses a circle-packing formulation to optimize the placement of turbines within a flexible, unconstrained spatial domain while incorporating a radial cabling strategy to evaluate and minimize power losses. In particular, the model positions turbines in a flexible, unconstrained spatial domain with circle packings and implements a radial cabling strategy to evaluate and minimize power losses. The method considers a Gaussian-based wake model and losses due to dips and resistivity of the electrical cables. The resulting model was solved using a global NLP solver (GAMS/BARON) for several scenarios. The result shows a 43 % reduction in the occupied area and a 0.42 % decrease in annual energy production. It also has more spatial compactness, shorter cable length, and more stable performance than the traditional grid-based and heuristic models. Its scalable and flexible formulation makes it suitable for planning offshore wind farms in earlier stages.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"203 ","pages":"Article 109346"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425003485","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The proper siting of wind turbines and cable routing in offshore wind energy systems can be used to prevent wake effects and electrical losses. This study adopts a continuous-domain optimization model based on nonlinear programming for offshore wind farms' simultaneous layout and electrical placement. In particular, it uses a circle-packing formulation to optimize the placement of turbines within a flexible, unconstrained spatial domain while incorporating a radial cabling strategy to evaluate and minimize power losses. In particular, the model positions turbines in a flexible, unconstrained spatial domain with circle packings and implements a radial cabling strategy to evaluate and minimize power losses. The method considers a Gaussian-based wake model and losses due to dips and resistivity of the electrical cables. The resulting model was solved using a global NLP solver (GAMS/BARON) for several scenarios. The result shows a 43 % reduction in the occupied area and a 0.42 % decrease in annual energy production. It also has more spatial compactness, shorter cable length, and more stable performance than the traditional grid-based and heuristic models. Its scalable and flexible formulation makes it suitable for planning offshore wind farms in earlier stages.
海上风电场布局与电缆优化的新型圆填料NLP模型
在海上风能系统中,风力涡轮机和电缆布线的适当位置可以用来防止尾流效应和电力损失。本文采用基于非线性规划的连续域优化模型,对海上风电场的同步布局和电气布置进行了研究。特别的是,它使用了一个圆形包装配方,以优化涡轮机的位置在一个灵活的,不受约束的空间域,同时结合径向布线策略,以评估和最小化功率损失。特别是,该模型将涡轮机放置在一个灵活的、不受约束的空间域中,并使用圆形填料,并实施径向布线策略来评估和最小化功率损失。该方法考虑了基于高斯的尾流模型以及电缆的倾角和电阻率造成的损耗。使用全局NLP求解器(GAMS/BARON)对多个场景进行求解。结果表明,占地面积减少43%,年能源产量减少0.42%。与传统的基于网格和启发式模型相比,该模型具有更大的空间紧凑性、更短的电缆长度和更稳定的性能。其可扩展和灵活的配方使其适合早期规划海上风力发电场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信