Latent attribute augmented network for few-shot class-incremental learning

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yongli Hu, Jiasen Zhang, Huajie Jiang, Baocai Yin
{"title":"Latent attribute augmented network for few-shot class-incremental learning","authors":"Yongli Hu,&nbsp;Jiasen Zhang,&nbsp;Huajie Jiang,&nbsp;Baocai Yin","doi":"10.1016/j.neucom.2025.131266","DOIUrl":null,"url":null,"abstract":"<div><div>Few-Shot Class-Incremental Learning (FSCIL) aims to learn knowledge about new classes continually with limited labeled data, where preserving knowledge about old classes and fast adaptation to new classes play important roles in FSCIL models. Traditional approaches usually learn discriminative global features among base classes and the feature extraction model is directly applied to novel categories. However, the global features, though effective for base class discrimination, are less generalized to novel categories. Therefore, we focus on the more generalizable local parts and propose the Latent Attribute Augmented Network (LAAN) to enhance the discriminative local features. Specifically, we automatically learn some latent attributes that are shared among different classes and utilize them to focus on the key local regions of the images. Furthermore, we construct a transformer-based knowledge interaction module, to fuse the information of latent attributes and the local features, which obtains more discriminative features to classify different classes. Our method has achieved superior performance across three benchmark datasets: CIFAR100, mini-ImageNet, and CUB200.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"654 ","pages":"Article 131266"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225019381","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Few-Shot Class-Incremental Learning (FSCIL) aims to learn knowledge about new classes continually with limited labeled data, where preserving knowledge about old classes and fast adaptation to new classes play important roles in FSCIL models. Traditional approaches usually learn discriminative global features among base classes and the feature extraction model is directly applied to novel categories. However, the global features, though effective for base class discrimination, are less generalized to novel categories. Therefore, we focus on the more generalizable local parts and propose the Latent Attribute Augmented Network (LAAN) to enhance the discriminative local features. Specifically, we automatically learn some latent attributes that are shared among different classes and utilize them to focus on the key local regions of the images. Furthermore, we construct a transformer-based knowledge interaction module, to fuse the information of latent attributes and the local features, which obtains more discriminative features to classify different classes. Our method has achieved superior performance across three benchmark datasets: CIFAR100, mini-ImageNet, and CUB200.
基于少次类增量学习的潜在属性增强网络
FSCIL (Few-Shot Class-Incremental Learning)的目标是在有限的标记数据下持续学习新类的知识,其中保留旧类知识和快速适应新类在FSCIL模型中起着重要的作用。传统方法通常学习基类之间的判别性全局特征,特征提取模型直接应用于新类别。然而,全局特征虽然对基类区分有效,但对新类别的泛化程度较低。因此,我们着眼于更具泛化性的局部部分,提出了潜在属性增强网络(Latent Attribute Augmented Network, LAAN)来增强识别性的局部特征。具体来说,我们自动学习一些在不同类别之间共享的潜在属性,并利用它们来关注图像的关键局部区域。在此基础上,构建了一个基于变换的知识交互模块,将潜在属性信息与局部特征信息融合,得到更多的判别特征,对不同的类进行分类。我们的方法在三个基准数据集(CIFAR100、mini-ImageNet和CUB200)上取得了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信