{"title":"Estimation of semiparametric probit model based on case-cohort interval-censored failure time data","authors":"Mingyue Du, Ricong Zeng","doi":"10.1016/j.csda.2025.108266","DOIUrl":null,"url":null,"abstract":"<div><div>The estimation of semiparametric probit model is discussed for the situation where one observes interval-censored failure time data arising from case-cohort studies. The probit model has recently attracted some attention for regression analysis of failure time data partly due to the popularity of the normal distribution and its similarity to linear models. Although some methods have been developed in the literature for its estimation, it does not seem to exist an established approach for the situation of case-cohort interval-censored data. To address this, a pseudo-maximum likelihood method is proposed and furthermore, an EM algorithm is developed for its implementation. The resulting estimators of regression parameters are shown to be consistent and asymptotically follow the normal distribution. To assess the empirical performance of the proposed method, a simulation study is conducted and indicates that it works well in practical situations. In addition, it is applied to a set of real data arising from an AIDS clinical trial that motivated this study.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"213 ","pages":"Article 108266"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325001422","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The estimation of semiparametric probit model is discussed for the situation where one observes interval-censored failure time data arising from case-cohort studies. The probit model has recently attracted some attention for regression analysis of failure time data partly due to the popularity of the normal distribution and its similarity to linear models. Although some methods have been developed in the literature for its estimation, it does not seem to exist an established approach for the situation of case-cohort interval-censored data. To address this, a pseudo-maximum likelihood method is proposed and furthermore, an EM algorithm is developed for its implementation. The resulting estimators of regression parameters are shown to be consistent and asymptotically follow the normal distribution. To assess the empirical performance of the proposed method, a simulation study is conducted and indicates that it works well in practical situations. In addition, it is applied to a set of real data arising from an AIDS clinical trial that motivated this study.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]