The protective role of adipogenic lineage precursors in maintaining bone marrow redox homeostasis in a mouse model of prenatal dexamethasone exposure

IF 11.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jianwen Su , Sushuang Ma , Mankai Yang , Jichang Wu , Yijie Chen , Mingchao Jin , Qin Shi , Xianrong Zhang
{"title":"The protective role of adipogenic lineage precursors in maintaining bone marrow redox homeostasis in a mouse model of prenatal dexamethasone exposure","authors":"Jianwen Su ,&nbsp;Sushuang Ma ,&nbsp;Mankai Yang ,&nbsp;Jichang Wu ,&nbsp;Yijie Chen ,&nbsp;Mingchao Jin ,&nbsp;Qin Shi ,&nbsp;Xianrong Zhang","doi":"10.1016/j.redox.2025.103820","DOIUrl":null,"url":null,"abstract":"<div><div>Bone marrow adipogenic precursors play important roles in bone metabolism in both young and adult mice, but their contributions to early long bone development remains poorly understood. In this study, we elucidate the role of bone marrow adipocyte lineage precursors in modulating bone marrow redox homeostasis through the secretion of fibulin-5 (Fbln5), using a prenatal dexamethasone exposure (PDE) mouse model. Our previous research demonstrates that PDE induces cellular senescence in the bone marrow, resulting in long bone growth retardation in young offspring. Extending these findings, we now reveal that PDE not only induces cellular senescence and impairs bone formation, but also disrupts type H vessels and reduces Adiponectin-expressing (<em>Adipoq</em><sup><em>+</em></sup>) cells. Importantly, genetic ablation of <em>Adipoq</em><sup><em>+</em></sup> cells recapitulates the phenotypes observed in PDE-exposed offspring, characterized by increased cellular senescence and loss of osteoblasts and osteoprogenitors during the early postnatal period, ultimately resulting in reduced trabecular bone mass in young adult mice. RNA-seq and <em>in vivo</em> data identify that <em>Adipoq</em><sup><em>+</em></sup> cells are a primary source of Fbln5, and that PDE significantly reduced the number of <em>Adipoq</em><sup><em>+</em></sup> cells, thereby decreasing Fbln5 expression and elevating ROS stress in bone marrow. Moreover, targeted overexpression of Fbln5 in <em>Adipoq</em><sup><em>+</em></sup> cells via adeno-associated virus effectively mitigates cellular senescence and ROS accumulation, preserves type H vessels and osteoblasts, and normalizes osteoclasts activity, thereby rescuing the long bone growth retardation caused by PDE. Collectively, these findings uncover a previously unrecognized function of <em>Adipoq</em><sup><em>+</em></sup> cells in regulating redox homeostasis within the bone marrow microenvironment during the early stages of long bone development.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"86 ","pages":"Article 103820"},"PeriodicalIF":11.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725003337","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bone marrow adipogenic precursors play important roles in bone metabolism in both young and adult mice, but their contributions to early long bone development remains poorly understood. In this study, we elucidate the role of bone marrow adipocyte lineage precursors in modulating bone marrow redox homeostasis through the secretion of fibulin-5 (Fbln5), using a prenatal dexamethasone exposure (PDE) mouse model. Our previous research demonstrates that PDE induces cellular senescence in the bone marrow, resulting in long bone growth retardation in young offspring. Extending these findings, we now reveal that PDE not only induces cellular senescence and impairs bone formation, but also disrupts type H vessels and reduces Adiponectin-expressing (Adipoq+) cells. Importantly, genetic ablation of Adipoq+ cells recapitulates the phenotypes observed in PDE-exposed offspring, characterized by increased cellular senescence and loss of osteoblasts and osteoprogenitors during the early postnatal period, ultimately resulting in reduced trabecular bone mass in young adult mice. RNA-seq and in vivo data identify that Adipoq+ cells are a primary source of Fbln5, and that PDE significantly reduced the number of Adipoq+ cells, thereby decreasing Fbln5 expression and elevating ROS stress in bone marrow. Moreover, targeted overexpression of Fbln5 in Adipoq+ cells via adeno-associated virus effectively mitigates cellular senescence and ROS accumulation, preserves type H vessels and osteoblasts, and normalizes osteoclasts activity, thereby rescuing the long bone growth retardation caused by PDE. Collectively, these findings uncover a previously unrecognized function of Adipoq+ cells in regulating redox homeostasis within the bone marrow microenvironment during the early stages of long bone development.
在产前地塞米松暴露小鼠模型中,脂肪生成谱系前体在维持骨髓氧化还原稳态中的保护作用
骨髓脂肪生成前体在年轻和成年小鼠的骨代谢中都起着重要作用,但它们对早期长骨发育的贡献仍然知之甚少。在这项研究中,我们利用产前地塞米松暴露(PDE)小鼠模型阐明了骨髓脂肪细胞系前体通过分泌纤维蛋白-5 (Fbln5)调节骨髓氧化还原稳态的作用。我们之前的研究表明,PDE诱导骨髓细胞衰老,导致幼子长骨生长迟缓。扩展这些发现,我们现在揭示PDE不仅诱导细胞衰老和损害骨形成,而且还破坏H型血管和减少脂联素表达(Adipoq+)细胞。重要的是,Adipoq+细胞的基因消融重现了在pde暴露的后代中观察到的表型,其特征是细胞衰老增加,成骨细胞和骨祖细胞在出生后早期丢失,最终导致年轻成年小鼠小梁骨量减少。RNA-seq和体内数据表明,Adipoq+细胞是Fbln5的主要来源,PDE显著减少了Adipoq+细胞的数量,从而降低了Fbln5的表达,提高了骨髓中的ROS应激。此外,通过腺相关病毒在Adipoq+细胞中靶向过表达Fbln5,可有效缓解细胞衰老和ROS积累,保存H型血管和成骨细胞,使破骨细胞活性正常化,从而挽救PDE引起的长骨生长迟缓。总的来说,这些发现揭示了在长骨发育的早期阶段,Adipoq+细胞在调节骨髓微环境中的氧化还原稳态中的一个以前未被认识到的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信