Control mechanism of regional structure on geothermal water chemistry, geothermal field and thermal hazard in a coal mine

IF 4.6 0 ENERGY & FUELS
Zhehan Sun , Kun Yu , Zheng Zhen , Ali Raza , Jiakun Lv
{"title":"Control mechanism of regional structure on geothermal water chemistry, geothermal field and thermal hazard in a coal mine","authors":"Zhehan Sun ,&nbsp;Kun Yu ,&nbsp;Zheng Zhen ,&nbsp;Ali Raza ,&nbsp;Jiakun Lv","doi":"10.1016/j.geoen.2025.214164","DOIUrl":null,"url":null,"abstract":"<div><div>The coalfields of eastern China possess a great potential for hydrothermal geothermal resources. Rapid exploration and development of these geothermal resources are vital for achieving carbon emission reductions and promoting the green transformation of the mining sector. In this work, we analyze the chemistry of geothermal water and borehole temperature data from the Ordovician limestone thermal reservoir in the Xinhu coal mine, Huaibei Coalfield. The results indicate that the deep geothermal water is predominantly characterized by a Na·Ca-HCO<sub>3</sub>·SO<sub>4</sub> composition, representing a mixture of shallow and deep groundwater. The horizontal average temperature of the thermal reservoir in the Ordovician limestone of this region is 50.5 °C, with the average circulation depth of geothermal water in the Ordovician limestone being 1267 m. The Xinhu coal mine has an average geothermal heat flow value of 61.93 mW/m<sup>2</sup> and an average geothermal gradient of 26.2 °C/km, and the geothermal gradient is controlled by faults and syncline structures. The drilling temperature curve indicates that the geothermal gradient in the study area is stable, with heat transfer primarily occurring through heat conduction. The dual tectonic heat accumulation model consisting of the Xinhu syncline and the deep large-scale faults determines the occurrence environment of the hydrothermal system of the Xinhu coal mine. Consequently, the combined influence of the F<sub>1</sub>, F<sub>2</sub> and F<sub>9</sub> fault systems, and geothermal water migration formed the second-level thermal hazard in the coal mine.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"256 ","pages":"Article 214164"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025005226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The coalfields of eastern China possess a great potential for hydrothermal geothermal resources. Rapid exploration and development of these geothermal resources are vital for achieving carbon emission reductions and promoting the green transformation of the mining sector. In this work, we analyze the chemistry of geothermal water and borehole temperature data from the Ordovician limestone thermal reservoir in the Xinhu coal mine, Huaibei Coalfield. The results indicate that the deep geothermal water is predominantly characterized by a Na·Ca-HCO3·SO4 composition, representing a mixture of shallow and deep groundwater. The horizontal average temperature of the thermal reservoir in the Ordovician limestone of this region is 50.5 °C, with the average circulation depth of geothermal water in the Ordovician limestone being 1267 m. The Xinhu coal mine has an average geothermal heat flow value of 61.93 mW/m2 and an average geothermal gradient of 26.2 °C/km, and the geothermal gradient is controlled by faults and syncline structures. The drilling temperature curve indicates that the geothermal gradient in the study area is stable, with heat transfer primarily occurring through heat conduction. The dual tectonic heat accumulation model consisting of the Xinhu syncline and the deep large-scale faults determines the occurrence environment of the hydrothermal system of the Xinhu coal mine. Consequently, the combined influence of the F1, F2 and F9 fault systems, and geothermal water migration formed the second-level thermal hazard in the coal mine.
区域构造对某煤矿地热水化学、地热场及热危害的控制机理
中国东部煤田具有巨大的热液地热资源潜力。这些地热资源的快速勘探和开发对于实现碳减排和促进采矿业的绿色转型至关重要。本文对淮北煤田新湖煤矿奥陶系灰岩热储的地热水化学成分和井温资料进行了分析。结果表明,深层地热水以Na·ca·hco3·SO4成分为主,为浅层地下水和深层地下水的混合体。本区奥陶系灰岩热储层水平平均温度为50.5℃,奥陶系灰岩地热水平均循环深度为1267 m。新湖煤矿平均地热热流值为61.93 mW/m2,平均地温梯度为26.2℃/km,地温梯度受断裂和向斜构造控制。钻温曲线表明,研究区地温梯度稳定,传热主要以热传导方式进行。由新湖向斜和深部大断裂组成的双重构造热聚集模式决定了新湖煤矿热液系统的赋存环境。因此,F1、F2和F9断裂系统的综合影响以及地热水运移形成了煤矿的二级热危害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信