Cycle-efficient modeling for degradation staging and early life prediction of lithium batteries

IF 16.4
Can Wang , Renjie Wang , Jianming Li , Zhuangzhuang Li , Quanqing Yu
{"title":"Cycle-efficient modeling for degradation staging and early life prediction of lithium batteries","authors":"Can Wang ,&nbsp;Renjie Wang ,&nbsp;Jianming Li ,&nbsp;Zhuangzhuang Li ,&nbsp;Quanqing Yu","doi":"10.1016/j.geits.2025.100338","DOIUrl":null,"url":null,"abstract":"<div><div>An effective and time-saving early life prediction model is crucial for rapid battery assessment. However, existing models face a dilemma: they either rely heavily on extensive historical data or provide limited predictive insights into battery degradation. To address this, this study proposes a cycle-efficient battery life assessment framework integrating data-driven and empirical models. The framework consists of two components: degradation stage detection relying solely on data from one cycle and early life prediction using five-cycle data. The early life prediction model is capable of achieving joint prediction of the battery's remaining useful life and the cycle to knee point. Experimental results demonstrate that the degradation staging model achieves an accuracy of 0.977,6 for lithium iron phosphate batteries. Meanwhile, the early life prediction model yields mean absolute percentage errors of 10.5% for remaining useful life and 12.8% for the cycle to knee predictions. The model's accuracy and generalizability have been validated across diverse battery types, health states, and operating conditions. This proposed framework exhibits excellent generalizability capability under all evaluated scenarios, establishing a robust foundation for rapid battery design assessment and retirement decisions.</div></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"4 5","pages":"Article 100338"},"PeriodicalIF":16.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277315372500088X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An effective and time-saving early life prediction model is crucial for rapid battery assessment. However, existing models face a dilemma: they either rely heavily on extensive historical data or provide limited predictive insights into battery degradation. To address this, this study proposes a cycle-efficient battery life assessment framework integrating data-driven and empirical models. The framework consists of two components: degradation stage detection relying solely on data from one cycle and early life prediction using five-cycle data. The early life prediction model is capable of achieving joint prediction of the battery's remaining useful life and the cycle to knee point. Experimental results demonstrate that the degradation staging model achieves an accuracy of 0.977,6 for lithium iron phosphate batteries. Meanwhile, the early life prediction model yields mean absolute percentage errors of 10.5% for remaining useful life and 12.8% for the cycle to knee predictions. The model's accuracy and generalizability have been validated across diverse battery types, health states, and operating conditions. This proposed framework exhibits excellent generalizability capability under all evaluated scenarios, establishing a robust foundation for rapid battery design assessment and retirement decisions.

Abstract Image

锂电池退化分期和早期寿命预测的循环效率建模
有效、省时的早期寿命预测模型对于电池的快速评估至关重要。然而,现有的模型面临着一个困境:它们要么严重依赖于大量的历史数据,要么对电池退化提供有限的预测见解。为了解决这个问题,本研究提出了一个循环高效的电池寿命评估框架,该框架集成了数据驱动模型和经验模型。该框架由两个部分组成:仅依赖于一个周期数据的退化阶段检测和使用五个周期数据的早期寿命预测。早期寿命预测模型能够实现对电池剩余使用寿命和循环至膝点的联合预测。实验结果表明,该模型对磷酸铁锂电池的降解分级精度为0.977,6。同时,早期寿命预测模型对剩余使用寿命的平均绝对百分比误差为10.5%,对周期到膝盖预测的平均绝对百分比误差为12.8%。该模型的准确性和通用性已经在不同的电池类型、健康状态和操作条件下进行了验证。该框架在所有评估情景下都表现出出色的通用性,为快速电池设计评估和退役决策奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信