Andrew Zhang, Eric Zhao, Ruirui Wang, Xiuqi Zhang, Justin Wang, Ethan Chen
{"title":"Multimodal large language models for medical image diagnosis: Challenges and opportunities","authors":"Andrew Zhang, Eric Zhao, Ruirui Wang, Xiuqi Zhang, Justin Wang, Ethan Chen","doi":"10.1016/j.jbi.2025.104895","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of artificial intelligence (AI) into radiology has significantly improved diagnostic accuracy and workflow efficiency. Multimodal large language models (MLLMs), which combine natural language processing (NLP) and computer vision techniques, hold the potential to further revolutionize medical image analysis. Despite these advances, their widespread clinical adoption of MLLMs remains limited by challenges such as data quality, interpretability, ethical and regulatory compliance- including adherence to frameworks like the General Data Protection Regulation (GDPR) − computational demands, and generalizability across diverse patient populations. Addressing these interconnected challenges presents opportunities to enhance MLLM performance and reliability. Priorities for future research include improving model transparency, safeguarding data privacy through federated learning, optimizing multimodal fusion strategies, and establishing standardized evaluation frameworks. By overcoming these barriers, MLLMs can become essential tools in radiology, supporting clinical decision-making, and improving patient outcomes.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"169 ","pages":"Article 104895"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425001248","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of artificial intelligence (AI) into radiology has significantly improved diagnostic accuracy and workflow efficiency. Multimodal large language models (MLLMs), which combine natural language processing (NLP) and computer vision techniques, hold the potential to further revolutionize medical image analysis. Despite these advances, their widespread clinical adoption of MLLMs remains limited by challenges such as data quality, interpretability, ethical and regulatory compliance- including adherence to frameworks like the General Data Protection Regulation (GDPR) − computational demands, and generalizability across diverse patient populations. Addressing these interconnected challenges presents opportunities to enhance MLLM performance and reliability. Priorities for future research include improving model transparency, safeguarding data privacy through federated learning, optimizing multimodal fusion strategies, and establishing standardized evaluation frameworks. By overcoming these barriers, MLLMs can become essential tools in radiology, supporting clinical decision-making, and improving patient outcomes.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.