Loay Alajramy , Marco Simoni , Marco Rasori , Andrea Saracino , Paolo Mori
{"title":"On-device derivation of IoT usage control policies: Automating U-XACML policy generation from natural language with LLMs in smart homes environments","authors":"Loay Alajramy , Marco Simoni , Marco Rasori , Andrea Saracino , Paolo Mori","doi":"10.1016/j.future.2025.108067","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a framework that integrates AI-based derivation of Access and Usage Control policies for IoT devices, using Large Language Models (LLMs) to automate the generation of policies from unstructured natural language commands. The framework employs a hybrid approach, combining LLMs with dedicated libraries to ensure efficient on-device execution. Our approach is based on a two-step process: first, a fine-tuned LLM converts user commands into structured JSON policy representations; then, a transformation module translates the JSON policies into fully compliant U-XACML policies. To ensure generality across different domains, we introduce a taxonomy-driven dataset creation, which enables policy creation for different environments such as smart homes, smart offices, and healthcare settings. Our evaluation demonstrates that the system achieves 93 % accuracy in policy generation and 91 % accuracy when handling ambiguous or noisy inputs. It also reaches 98 % agreement with expert-defined policies in real-world scenarios. Finally, on-device performance evaluations confirm the feasibility of running the model in practical settings, demonstrating reliable inference under constrained hardware conditions.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"175 ","pages":"Article 108067"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25003620","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a framework that integrates AI-based derivation of Access and Usage Control policies for IoT devices, using Large Language Models (LLMs) to automate the generation of policies from unstructured natural language commands. The framework employs a hybrid approach, combining LLMs with dedicated libraries to ensure efficient on-device execution. Our approach is based on a two-step process: first, a fine-tuned LLM converts user commands into structured JSON policy representations; then, a transformation module translates the JSON policies into fully compliant U-XACML policies. To ensure generality across different domains, we introduce a taxonomy-driven dataset creation, which enables policy creation for different environments such as smart homes, smart offices, and healthcare settings. Our evaluation demonstrates that the system achieves 93 % accuracy in policy generation and 91 % accuracy when handling ambiguous or noisy inputs. It also reaches 98 % agreement with expert-defined policies in real-world scenarios. Finally, on-device performance evaluations confirm the feasibility of running the model in practical settings, demonstrating reliable inference under constrained hardware conditions.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.