Exploring dynamic energy transfer in electrostatically coupled micro shallow arch sensors

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Hassen M. Ouakad , Ayman M. Alneamy
{"title":"Exploring dynamic energy transfer in electrostatically coupled micro shallow arch sensors","authors":"Hassen M. Ouakad ,&nbsp;Ayman M. Alneamy","doi":"10.1016/j.chaos.2025.117038","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the dynamic energy transfer mechanisms in electrostatically coupled MEMS resonating micro shallow arch sensors. The micro sensor design features two initially curved thin-beam resonators, electrostatically actuated by a single side-wall electrode and electrically coupled to enable mode localization and energy exchange, thereby facilitating the detection of external perturbations in their vicinity. Utilizing the nonlinear Euler–Bernoulli beam formulation, a reduced-order model (ROM) is constructed via the Galerkin procedure to analyze static deflection, eigenvalues, and nonlinear dynamic responses. The findings reveal the presence of veering, crossover phenomena, and energy channeling under varying electrostatic actuation conditions. A detailed parametric study demonstrates the influence of static voltage on the resonators’ fundamental frequencies, highlighting veering behavior and energy redistribution between symmetric and anti-symmetric modes. Moreover, frequency-response analyses confirm the occurrence of coupled resonance, nonlinear frequency interactions, and mode softening. These insights contribute to the advancement of MEMS-based sensing technologies, enhancing their sensitivity and tunability for real-world applications including communications and satellite.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"200 ","pages":"Article 117038"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925010513","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the dynamic energy transfer mechanisms in electrostatically coupled MEMS resonating micro shallow arch sensors. The micro sensor design features two initially curved thin-beam resonators, electrostatically actuated by a single side-wall electrode and electrically coupled to enable mode localization and energy exchange, thereby facilitating the detection of external perturbations in their vicinity. Utilizing the nonlinear Euler–Bernoulli beam formulation, a reduced-order model (ROM) is constructed via the Galerkin procedure to analyze static deflection, eigenvalues, and nonlinear dynamic responses. The findings reveal the presence of veering, crossover phenomena, and energy channeling under varying electrostatic actuation conditions. A detailed parametric study demonstrates the influence of static voltage on the resonators’ fundamental frequencies, highlighting veering behavior and energy redistribution between symmetric and anti-symmetric modes. Moreover, frequency-response analyses confirm the occurrence of coupled resonance, nonlinear frequency interactions, and mode softening. These insights contribute to the advancement of MEMS-based sensing technologies, enhancing their sensitivity and tunability for real-world applications including communications and satellite.
静电耦合微浅拱传感器的动态能量传递研究
本研究探讨了静电耦合MEMS谐振微浅弓传感器的动态能量传递机制。微传感器设计具有两个初始弯曲的薄束谐振器,由单个侧壁电极静电驱动,并电耦合以实现模式定位和能量交换,从而促进检测其附近的外部扰动。利用非线性欧拉-伯努利梁公式,通过伽辽金过程建立了降阶模型(ROM)来分析静力挠度、特征值和非线性动力响应。研究结果揭示了在不同的静电驱动条件下存在转向、交叉现象和能量通道。详细的参数研究证明了静电压对谐振器基频的影响,突出了对称和反对称模式之间的转向行为和能量再分配。此外,频率响应分析证实了耦合共振、非线性频率相互作用和模态软化的存在。这些见解有助于基于mems的传感技术的进步,提高其在包括通信和卫星在内的实际应用中的灵敏度和可调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信