An experimental and numerical dynamic study of thick sandwich beams using a mixed {3,2}-RZT formulation

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED
Matteo Sorrenti, Marco Gherlone
{"title":"An experimental and numerical dynamic study of thick sandwich beams using a mixed {3,2}-RZT formulation","authors":"Matteo Sorrenti,&nbsp;Marco Gherlone","doi":"10.1016/j.finel.2025.104435","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents some numerical and experimental validations of the free-vibration behaviour of thick sandwich beams using the mixed {3,2}-Refined Zigzag Theory (<span><math><mrow><msubsup><mtext>RZT</mtext><mrow><mo>{</mo><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow><mo>}</mo></mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></msubsup></mrow></math></span>). The <span><math><mrow><msubsup><mtext>RZT</mtext><mrow><mo>{</mo><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow><mo>}</mo></mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></msubsup></mrow></math></span> formulation enhances the Timoshenko's kinematics with a piece-wise zigzag cubic distribution of the axial displacement, and a smoothed parabolic variation for the transverse deflection. Simultaneously, an a-priori assumption is made for the transverse normal stress and the transverse shear one: the former is assumed to be a third-order power series expansion of the thickness coordinate, while the latter is derived through the integration of Cauchy's equations. The equations of motion and consistent boundary conditions for the free-vibration problem are derived through the Hellinger-Reissner (HR) theorem. Taking advantage of the C<sup>0</sup>-continuity requirement in the mixed governing functional, a simple two-node beam finite element (FE) is formulated, i.e., the <span><math><mrow><mn>2</mn><mi>B</mi><mo>−</mo><msubsup><mtext>RZT</mtext><mrow><mo>{</mo><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow><mo>}</mo></mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></msubsup></mrow></math></span> element. The analytical and FE performances of the proposed <span><math><mrow><msubsup><mtext>RZT</mtext><mrow><mo>{</mo><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow><mo>}</mo></mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></msubsup></mrow></math></span> model are first addressed by means of a comparison with high-fidelity 3D FE models. Subsequently, an experimental campaign is conducted using LASER Doppler Vibrometry (LDV) to evaluate the modal parameters of a series of thick sandwich beams made of aluminium alloy face-sheets and Rohacell® WF110 core. The experimental results concerning the natural frequencies and modal shapes of the thick sandwich beam specimens under free-free boundary conditions are compared with those given by <span><math><mrow><msubsup><mtext>RZT</mtext><mrow><mo>{</mo><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow><mo>}</mo></mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></msubsup></mrow></math></span> and high-fidelity 3D FE models. The numerical-experimental assessment highlights the effect of core and face-sheet thickness on frequency estimations, as well as the complexity of reproducing in the numerical model the experimental uncertainties. In general, the <span><math><mrow><mn>2</mn><mi>B</mi><mo>−</mo><msubsup><mtext>RZT</mtext><mrow><mo>{</mo><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow><mo>}</mo></mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></msubsup></mrow></math></span> element formulation demonstrates its accuracy and computational advantages in the dynamic analysis of thick sandwich beams.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"251 ","pages":"Article 104435"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X25001246","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents some numerical and experimental validations of the free-vibration behaviour of thick sandwich beams using the mixed {3,2}-Refined Zigzag Theory (RZT{3,2}(m)). The RZT{3,2}(m) formulation enhances the Timoshenko's kinematics with a piece-wise zigzag cubic distribution of the axial displacement, and a smoothed parabolic variation for the transverse deflection. Simultaneously, an a-priori assumption is made for the transverse normal stress and the transverse shear one: the former is assumed to be a third-order power series expansion of the thickness coordinate, while the latter is derived through the integration of Cauchy's equations. The equations of motion and consistent boundary conditions for the free-vibration problem are derived through the Hellinger-Reissner (HR) theorem. Taking advantage of the C0-continuity requirement in the mixed governing functional, a simple two-node beam finite element (FE) is formulated, i.e., the 2BRZT{3,2}(m) element. The analytical and FE performances of the proposed RZT{3,2}(m) model are first addressed by means of a comparison with high-fidelity 3D FE models. Subsequently, an experimental campaign is conducted using LASER Doppler Vibrometry (LDV) to evaluate the modal parameters of a series of thick sandwich beams made of aluminium alloy face-sheets and Rohacell® WF110 core. The experimental results concerning the natural frequencies and modal shapes of the thick sandwich beam specimens under free-free boundary conditions are compared with those given by RZT{3,2}(m) and high-fidelity 3D FE models. The numerical-experimental assessment highlights the effect of core and face-sheet thickness on frequency estimations, as well as the complexity of reproducing in the numerical model the experimental uncertainties. In general, the 2BRZT{3,2}(m) element formulation demonstrates its accuracy and computational advantages in the dynamic analysis of thick sandwich beams.
使用{3,2}-RZT混合公式的厚夹层梁的实验和数值动力学研究
本文采用{3,2}-精炼之字形理论(RZT{3,2}(m))对厚夹层梁的自由振动特性进行了一些数值和实验验证。RZT{3,2}(m)公式通过轴向位移的分段之形三次分布和横向挠度的平滑抛物线变化增强了Timoshenko的运动学。同时,对横向正应力和横向剪应力进行了先验假设,其中横向正应力为厚度坐标的三阶幂级数展开式,横向剪应力为柯西方程的积分式。利用Hellinger-Reissner (HR)定理导出了自由振动问题的运动方程和一致边界条件。利用混合控制泛函中的c0 -连续性要求,建立了简单的两节点梁有限元(FE),即2B−RZT{3,2}(m)单元。首先通过与高保真三维有限元模型的比较,讨论了所提出的RZT{3,2}(m)模型的分析性能和有限元性能。随后,使用激光多普勒振动仪(LDV)进行了一项实验活动,以评估由铝合金面板和Rohacell®WF110芯制成的一系列厚夹层梁的模态参数。将自由-自由边界条件下厚夹层梁试件固有频率和模态振型的实验结果与RZT{3,2}(m)和高保真三维有限元模型给出的结果进行了比较。数值-实验评估强调了岩心和面板厚度对频率估计的影响,以及在数值模型中再现实验不确定性的复杂性。总的来说,2B−RZT{3,2}(m)单元公式在厚夹层梁动力分析中显示出其准确性和计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信