Huan Yang , Tong Shen , Zhi Qi , Zhong Yang , Mengyu Zhang , Jinhong Jiang , Zhuo Sun , Chen Lu
{"title":"TIM3 attenuates morphine antinociceptive tolerance and microglial neuroinflammation by suppressing the TRAF6/NF-κB pathway in male mice","authors":"Huan Yang , Tong Shen , Zhi Qi , Zhong Yang , Mengyu Zhang , Jinhong Jiang , Zhuo Sun , Chen Lu","doi":"10.1016/j.neuropharm.2025.110638","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic morphine administration often leads to the development of antinociceptive tolerance, presenting a significant challenge in the chronic pain management. Although microglia are known to mediate the neuroinflammation associated with morphine-induced antinociceptive tolerance, the molecular mechanisms underlying this process remain incompletely understood. Recent evidence indicates that T cell immunoglobulin domain and mucin domain-3 (TIM3) acts as an important regulator in inflammation-related diseases. In this study, we investigated the role of TIM3 in morphine antinociceptive tolerance. Pharmacological blockade of TIM3 exacerbated morphine antinociceptive tolerance and associated hyperalgesia, whereas upregulation of TIM3 in the spinal cord significantly reduced both the development and maintenance of antinociceptive tolerance. We found that TIM3 negatively regulated microglia-mediated neuroinflammation and neuronal apoptosis following chronic morphine exposure. Mechanistically, TIM3 promoted the degradation of tumor necrosis factor receptor-associated factor 6 (TRAF6) and inhibited the activation of nuclear factor κB (NF-κB) signaling pathways. Furthermore, we identified TRAF6 as a key mediator through which TIM3 attenuated morphine-induced antinociceptive tolerance and suppressed the secretion of proinflammatory factors. Notably, TIM3 interacted with tumor necrosis factor α-induced protein 3 (TNFAIP3) to enhance K48-linked ubiquitination of TRAF6 in morphine-stimulated microglia, thereby mitigating inflammatory responses. Together, these findings suggest that spinal TIM3 negatively modulates morphine antinociceptive tolerance by regulating microglial inflammatory responses through a TNFAIP3/TRAF6/NF-κB-dependent mechanism. This study highlights TIM3 as a promising therapeutic target for preventing morphine antinociceptive tolerance in chronic pain management.</div><div>Schematic diagram for the proposed mechanisms of TIM3 regulates morphine antinociceptive tolerance. TIM3 may alleviate morphine antinociceptive tolerance by suppressing microglia-mediated neuroinflammation and neuronal apoptosis, which is associated with the TRAF6/NF-κB pathway.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"279 ","pages":"Article 110638"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390825003466","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic morphine administration often leads to the development of antinociceptive tolerance, presenting a significant challenge in the chronic pain management. Although microglia are known to mediate the neuroinflammation associated with morphine-induced antinociceptive tolerance, the molecular mechanisms underlying this process remain incompletely understood. Recent evidence indicates that T cell immunoglobulin domain and mucin domain-3 (TIM3) acts as an important regulator in inflammation-related diseases. In this study, we investigated the role of TIM3 in morphine antinociceptive tolerance. Pharmacological blockade of TIM3 exacerbated morphine antinociceptive tolerance and associated hyperalgesia, whereas upregulation of TIM3 in the spinal cord significantly reduced both the development and maintenance of antinociceptive tolerance. We found that TIM3 negatively regulated microglia-mediated neuroinflammation and neuronal apoptosis following chronic morphine exposure. Mechanistically, TIM3 promoted the degradation of tumor necrosis factor receptor-associated factor 6 (TRAF6) and inhibited the activation of nuclear factor κB (NF-κB) signaling pathways. Furthermore, we identified TRAF6 as a key mediator through which TIM3 attenuated morphine-induced antinociceptive tolerance and suppressed the secretion of proinflammatory factors. Notably, TIM3 interacted with tumor necrosis factor α-induced protein 3 (TNFAIP3) to enhance K48-linked ubiquitination of TRAF6 in morphine-stimulated microglia, thereby mitigating inflammatory responses. Together, these findings suggest that spinal TIM3 negatively modulates morphine antinociceptive tolerance by regulating microglial inflammatory responses through a TNFAIP3/TRAF6/NF-κB-dependent mechanism. This study highlights TIM3 as a promising therapeutic target for preventing morphine antinociceptive tolerance in chronic pain management.
Schematic diagram for the proposed mechanisms of TIM3 regulates morphine antinociceptive tolerance. TIM3 may alleviate morphine antinociceptive tolerance by suppressing microglia-mediated neuroinflammation and neuronal apoptosis, which is associated with the TRAF6/NF-κB pathway.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).