Tianren Zhang, Hong Lang, Yubin Chen, Amin Moeinaddini, Yajie Zou
{"title":"Optimisation of Water-Road Freight Transportation Routes for Reduced Fuel Consumption and Traffic Risk","authors":"Tianren Zhang, Hong Lang, Yubin Chen, Amin Moeinaddini, Yajie Zou","doi":"10.1049/itr2.70078","DOIUrl":null,"url":null,"abstract":"<p>Negative externalities refer to costs arising from transportation activities that are not borne by service providers or consumers, often leading to their neglect in freight transportation planning. This study proposes a novel framework for optimising water-road transportation route selection by incorporating two key negative externalities: fuel consumption and traffic risk. Traffic risk is assessed using a safety performance function, while fuel consumption is estimated based on the Handbook of Emission Factors for Road Transport. The proposed framework is applied to California's road network and port system, where the optimal operation area for each major port is determined and compared across different optimisation objectives: trip distance, fuel consumption and traffic risk. Results indicate that the optimal operation area varies significantly depending on the relative weight assigned to each objective. The findings demonstrate that optimising routes beyond just minimising distance can reduce fuel consumption and traffic risk, highlighting the substantial differences in optimal operational areas under different criteria.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70078","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Negative externalities refer to costs arising from transportation activities that are not borne by service providers or consumers, often leading to their neglect in freight transportation planning. This study proposes a novel framework for optimising water-road transportation route selection by incorporating two key negative externalities: fuel consumption and traffic risk. Traffic risk is assessed using a safety performance function, while fuel consumption is estimated based on the Handbook of Emission Factors for Road Transport. The proposed framework is applied to California's road network and port system, where the optimal operation area for each major port is determined and compared across different optimisation objectives: trip distance, fuel consumption and traffic risk. Results indicate that the optimal operation area varies significantly depending on the relative weight assigned to each objective. The findings demonstrate that optimising routes beyond just minimising distance can reduce fuel consumption and traffic risk, highlighting the substantial differences in optimal operational areas under different criteria.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf