MicroDreamer: Efficient 3D Generation in $\sim$20 Seconds by Score-based Iterative Reconstruction.

IF 18.6
Luxi Chen, Zhengyi Wang, Zihan Zhou, Tingting Gao, Hang Su, Jun Zhu, Chongxuan Li
{"title":"MicroDreamer: Efficient 3D Generation in $\\sim$20 Seconds by Score-based Iterative Reconstruction.","authors":"Luxi Chen, Zhengyi Wang, Zihan Zhou, Tingting Gao, Hang Su, Jun Zhu, Chongxuan Li","doi":"10.1109/TPAMI.2025.3600494","DOIUrl":null,"url":null,"abstract":"<p><p>Optimization-based approaches, such as score distillation sampling (SDS), show promise in zero-shot 3D generation but suffer from low efficiency, primarily due to the high number of function evaluations (NFEs) required for each sample and the limitation of optimization confined to latent space. This paper introduces score-based iterative reconstruction (SIR), an efficient and general algorithm mimicking a differentiable 3D reconstruction process to reduce the NFEs and enable optimization in pixel space. Given a single set of images sampled from a multi-view score-based diffusion model, SIR repeatedly optimizes 3D parameters, unlike the single-step optimization in SDS. With other improvements in training, we present an efficient approach called MicroDreamer that generally applies to various 3D representations and 3D generation tasks. In particular, MicroDreamer is 5-20 times faster than SDS in generating neural radiance field while retaining a comparable performance and takes about 20 seconds to create meshes from 3D Gaussian splatting on a single A100 GPU, halving the time of the fastest optimization-based baseline DreamGaussian with significantly superior performance compared to the measurement standard deviation. Our code is available at https://github.com/ML-GSAI/MicroDreamer.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":18.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3600494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optimization-based approaches, such as score distillation sampling (SDS), show promise in zero-shot 3D generation but suffer from low efficiency, primarily due to the high number of function evaluations (NFEs) required for each sample and the limitation of optimization confined to latent space. This paper introduces score-based iterative reconstruction (SIR), an efficient and general algorithm mimicking a differentiable 3D reconstruction process to reduce the NFEs and enable optimization in pixel space. Given a single set of images sampled from a multi-view score-based diffusion model, SIR repeatedly optimizes 3D parameters, unlike the single-step optimization in SDS. With other improvements in training, we present an efficient approach called MicroDreamer that generally applies to various 3D representations and 3D generation tasks. In particular, MicroDreamer is 5-20 times faster than SDS in generating neural radiance field while retaining a comparable performance and takes about 20 seconds to create meshes from 3D Gaussian splatting on a single A100 GPU, halving the time of the fastest optimization-based baseline DreamGaussian with significantly superior performance compared to the measurement standard deviation. Our code is available at https://github.com/ML-GSAI/MicroDreamer.

MicroDreamer:通过基于分数的迭代重建,在$\sim$20秒内实现高效3D生成。
基于优化的方法,如分数蒸馏采样(SDS),在零射击3D生成中表现出希望,但效率较低,主要是由于每个样本需要大量的功能评估(nfe)以及优化局限于潜在空间。本文介绍了基于分数的迭代重建(SIR),这是一种模拟可微三维重建过程的高效通用算法,可以减少nfe并实现像素空间的优化。给定从基于分数的多视图扩散模型中采样的一组图像,SIR会重复优化3D参数,而不像SDS中的单步优化。随着训练的其他改进,我们提出了一种称为MicroDreamer的有效方法,该方法通常适用于各种3D表示和3D生成任务。特别是,microdream在生成神经辐射场方面比SDS快5-20倍,同时保持了相当的性能,并且在单个A100 GPU上从3D高斯飞溅创建网格大约需要20秒,将基于最快优化的基线DreamGaussian的时间缩短了一半,与测量标准偏差相比,性能显着优于SDS。我们的代码可在https://github.com/ML-GSAI/MicroDreamer上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信