{"title":"SKDF: A Simple Knowledge Distillation Framework for Distilling Open-Vocabulary Knowledge to Open-world Object Detector.","authors":"Shuailei Ma, Yuefeng Wang, Ying Wei, Enming Zhang, Jiaqi Fan, Xinyu Sun, Peihao Chen","doi":"10.1109/TPAMI.2025.3600435","DOIUrl":null,"url":null,"abstract":"<p><p>Open World Object Detection (OWOD) is a novel computer vision task with a considerable challenge, bridging the gap between classic object detection (OD) and real-world object detection. In addition to detecting and classifying seen/known objects, OWOD algorithms are expected to localize all potential unseen/unknown objects and incrementally learn them. The large pre-trained vision-language grounding models (VLM, e.g., GLIP) have rich knowledge about the open world, but are limited by text prompts and cannot localize indescribable objects. However, there are many detection scenarios in which pre-defined language descriptions are unavailable during inference. In this paper, we attempt to specialize the VLM model for OWOD tasks by distilling its open-world knowledge into a language-agnostic detector. Surprisingly, we observe that the simple knowledge distillation approach leads to unexpected performance for unknown object detection, even with a small amount of data. Unfortunately, knowledge distillation for unknown objects severely affects the learning of detectors with conventional structures, leading to catastrophic damage to the model's ability to learn about known objects. To alleviate these problems, we propose the down-weight training strategy for knowledge distillation from vision-language model to single visual modality one. Meanwhile, we propose the cascade decoupled decoders that decouple the learning of localization and recognition to reduce the impact of category interactions of known and unknown objects on the localization learning process. Ablation experiments demonstrate that both of them are effective in mitigating the impact of open-world knowledge distillation on the learning of known objects. Additionally, to alleviate the current lack of comprehensive benchmarks for evaluating the ability of the open-world detector to detect unknown objects in the open world, we refine the benchmark for evaluating the performance of unknown object detection by augmenting annotations for unknown objects which we name\"IntensiveSet$\\spadesuit$\". Comprehensive experiments performed on OWOD, MS-COCO, and our proposed benchmarks demonstrate the effectiveness of our methods.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":18.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3600435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Open World Object Detection (OWOD) is a novel computer vision task with a considerable challenge, bridging the gap between classic object detection (OD) and real-world object detection. In addition to detecting and classifying seen/known objects, OWOD algorithms are expected to localize all potential unseen/unknown objects and incrementally learn them. The large pre-trained vision-language grounding models (VLM, e.g., GLIP) have rich knowledge about the open world, but are limited by text prompts and cannot localize indescribable objects. However, there are many detection scenarios in which pre-defined language descriptions are unavailable during inference. In this paper, we attempt to specialize the VLM model for OWOD tasks by distilling its open-world knowledge into a language-agnostic detector. Surprisingly, we observe that the simple knowledge distillation approach leads to unexpected performance for unknown object detection, even with a small amount of data. Unfortunately, knowledge distillation for unknown objects severely affects the learning of detectors with conventional structures, leading to catastrophic damage to the model's ability to learn about known objects. To alleviate these problems, we propose the down-weight training strategy for knowledge distillation from vision-language model to single visual modality one. Meanwhile, we propose the cascade decoupled decoders that decouple the learning of localization and recognition to reduce the impact of category interactions of known and unknown objects on the localization learning process. Ablation experiments demonstrate that both of them are effective in mitigating the impact of open-world knowledge distillation on the learning of known objects. Additionally, to alleviate the current lack of comprehensive benchmarks for evaluating the ability of the open-world detector to detect unknown objects in the open world, we refine the benchmark for evaluating the performance of unknown object detection by augmenting annotations for unknown objects which we name"IntensiveSet$\spadesuit$". Comprehensive experiments performed on OWOD, MS-COCO, and our proposed benchmarks demonstrate the effectiveness of our methods.