Neovascularization Segmentation via a Multilateral Interaction-Enhanced Graph Convolutional Network.

IF 18.6
Tao Chen, Dan Zhang, Da Chen, Huazhu Fu, Kai Jin, Shanshan Wang, Laurent D Cohen, Yitian Zhao, Quanyong Yi, Jiong Zhang
{"title":"Neovascularization Segmentation via a Multilateral Interaction-Enhanced Graph Convolutional Network.","authors":"Tao Chen, Dan Zhang, Da Chen, Huazhu Fu, Kai Jin, Shanshan Wang, Laurent D Cohen, Yitian Zhao, Quanyong Yi, Jiong Zhang","doi":"10.1109/TPAMI.2025.3600335","DOIUrl":null,"url":null,"abstract":"<p><p>Choroidal neovascularization (CNV), a primary characteristic of wet age-related macular degeneration (wet AMD), represents a leading cause of blindness worldwide. In clinical practice, optical coherence tomography angiography (OCTA) is commonly used for studying CNV-related pathological changes, due to its micron-level resolution and non-invasive nature. Thus, accurate segmentation of CNV regions and vessels in OCTA images is crucial for clinical assessment of wet AMD. However, challenges existed due to irregular CNV shapes and imaging limitations like projection artifacts, noises and boundary blurring. Moreover, the lack of publicly available datasets constraints the CNV analysis. To address these challenges, this paper constructs the first publicly accessible CNV dataset (CNVSeg), and proposes a novel multilateral graph convolutional interaction-enhanced CNV segmentation network (MTG-Net). This network integrates both region and vessel morphological information, exploring semantic and geometric duality constraints within the graph domain. Specifically, MTG-Net consists of a multi-task framework and two graph-based cross-task modules: Multilateral Interaction Graph Reasoning (MIGR) and Multilateral Reinforcement Graph Reasoning (MRGR). The multi-task framework encodes rich geometric features of lesion shapes and surfaces, decoupling the image into three task-specific feature maps. MIGR and MRGR iteratively reason about higher-order relationships across tasks through a graph mechanism, enabling complementary optimization for task-specific objectives. Additionally, an uncertainty-weighted loss is proposed to mitigate the impact of artifacts and noise on segmentation accuracy. Experimental results demonstrate that MTG-Net outperforms existing methods, achieving a Dice socre of 87.21% for region segmentation and 88.12% for vessel segmentation.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":18.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3600335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Choroidal neovascularization (CNV), a primary characteristic of wet age-related macular degeneration (wet AMD), represents a leading cause of blindness worldwide. In clinical practice, optical coherence tomography angiography (OCTA) is commonly used for studying CNV-related pathological changes, due to its micron-level resolution and non-invasive nature. Thus, accurate segmentation of CNV regions and vessels in OCTA images is crucial for clinical assessment of wet AMD. However, challenges existed due to irregular CNV shapes and imaging limitations like projection artifacts, noises and boundary blurring. Moreover, the lack of publicly available datasets constraints the CNV analysis. To address these challenges, this paper constructs the first publicly accessible CNV dataset (CNVSeg), and proposes a novel multilateral graph convolutional interaction-enhanced CNV segmentation network (MTG-Net). This network integrates both region and vessel morphological information, exploring semantic and geometric duality constraints within the graph domain. Specifically, MTG-Net consists of a multi-task framework and two graph-based cross-task modules: Multilateral Interaction Graph Reasoning (MIGR) and Multilateral Reinforcement Graph Reasoning (MRGR). The multi-task framework encodes rich geometric features of lesion shapes and surfaces, decoupling the image into three task-specific feature maps. MIGR and MRGR iteratively reason about higher-order relationships across tasks through a graph mechanism, enabling complementary optimization for task-specific objectives. Additionally, an uncertainty-weighted loss is proposed to mitigate the impact of artifacts and noise on segmentation accuracy. Experimental results demonstrate that MTG-Net outperforms existing methods, achieving a Dice socre of 87.21% for region segmentation and 88.12% for vessel segmentation.

基于多边交互增强图卷积网络的新生血管分割。
脉络膜新生血管(CNV)是湿性年龄相关性黄斑变性(湿性AMD)的主要特征,是全球失明的主要原因。在临床实践中,光学相干断层扫描血管造影(OCTA)由于其微米级分辨率和无创性,被广泛用于研究cnv相关的病理变化。因此,OCTA图像中CNV区域和血管的准确分割对于湿性AMD的临床评估至关重要。然而,由于不规则的CNV形状和成像限制(如投影伪影、噪声和边界模糊)存在挑战。此外,缺乏公开可用的数据集限制了CNV分析。为了解决这些问题,本文构建了第一个可公开访问的CNV数据集(CNVSeg),并提出了一种新的多边图卷积交互增强CNV分割网络(MTG-Net)。该网络集成了区域和血管形态信息,在图域内探索语义和几何对偶约束。具体来说,MTG-Net由一个多任务框架和两个基于图的跨任务模块组成:多边交互图推理(MIGR)和多边强化图推理(MRGR)。多任务框架对病变形状和表面的丰富几何特征进行编码,将图像解耦为三个特定任务的特征映射。MIGR和MRGR通过图机制迭代地推断任务之间的高阶关系,从而实现针对特定任务目标的互补优化。此外,还提出了一种不确定性加权损失来减轻伪影和噪声对分割精度的影响。实验结果表明,MTG-Net在区域分割和血管分割方面的Dice分割率分别达到87.21%和88.12%,优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信