{"title":"Pathological aging is alleviated by neutralization of the autophagy-repressive tissue hormone DBI/ACBP.","authors":"Léa Montégut, Flavia Lambertucci, Lucas Moledo-Nodar, Isabelle Martins, Alejandro Lucia, Clea Barcena, Guido Kroemer","doi":"10.1080/15548627.2025.2549451","DOIUrl":null,"url":null,"abstract":"<p><p>DBI/ACBP (diazepam binding inhibitor, acyl CoA-binding protein) is a macroautophagy/autophagy-inhibitory tissue hormone produced by multiple cell types. The plasma levels of DBI/ACBP rise with age and disease. In centenarians living in nursing homes, DBI/ACBP concentrations are approximately threefold higher than in younger adults (30-48 years old), but these levels increase further in centenarians hospitalized due to disease exacerbation. Elevated DBI/ACBP correlates with unfavorable clinical parameters, including high Charlson Comorbidity Index, elevated neutrophil:lymphocyte ratio, and decreased renal function. In mouse models, neutralization of DBI/ACBP using monoclonal antibodies ameliorates several aging-related pathologies. In <i>zmpste24</i><sup><i>-/-</i></sup> progeroid mice, anti-DBI/ACBP therapy improves posture, mobility, cutaneous and dental abnormalities, splenic atrophy, kidney function, and blood parameters. In models of renal aging induced by cisplatin or doxorubicin, DBI/ACBP neutralization suppresses renal fibrosis and cellular senescence. Similarly, in cardiac and hepatic aging models, anti-DBI/ACBP reduces expression of the senescence marker CDKN1A/p21 (cyclin dependent kinase inhibitor 1A) in cardiomyocytes and hepatocytes. Single-nucleus RNA sequencing of heart tissue revealed that anti-DBI/ACBP restores key metabolic and cardioprotective gene expression patterns suppressed by doxorubicin. Together, these findings establish DBI/ACBP as a marker and driver of pathological aging and demonstrate that its neutralization confers multi-organ anti-senescence effects. Thus, DBI/ACBP-targeting strategies hold therapeutic potential for improving healthspan.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"2304-2306"},"PeriodicalIF":14.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12459365/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2549451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
DBI/ACBP (diazepam binding inhibitor, acyl CoA-binding protein) is a macroautophagy/autophagy-inhibitory tissue hormone produced by multiple cell types. The plasma levels of DBI/ACBP rise with age and disease. In centenarians living in nursing homes, DBI/ACBP concentrations are approximately threefold higher than in younger adults (30-48 years old), but these levels increase further in centenarians hospitalized due to disease exacerbation. Elevated DBI/ACBP correlates with unfavorable clinical parameters, including high Charlson Comorbidity Index, elevated neutrophil:lymphocyte ratio, and decreased renal function. In mouse models, neutralization of DBI/ACBP using monoclonal antibodies ameliorates several aging-related pathologies. In zmpste24-/- progeroid mice, anti-DBI/ACBP therapy improves posture, mobility, cutaneous and dental abnormalities, splenic atrophy, kidney function, and blood parameters. In models of renal aging induced by cisplatin or doxorubicin, DBI/ACBP neutralization suppresses renal fibrosis and cellular senescence. Similarly, in cardiac and hepatic aging models, anti-DBI/ACBP reduces expression of the senescence marker CDKN1A/p21 (cyclin dependent kinase inhibitor 1A) in cardiomyocytes and hepatocytes. Single-nucleus RNA sequencing of heart tissue revealed that anti-DBI/ACBP restores key metabolic and cardioprotective gene expression patterns suppressed by doxorubicin. Together, these findings establish DBI/ACBP as a marker and driver of pathological aging and demonstrate that its neutralization confers multi-organ anti-senescence effects. Thus, DBI/ACBP-targeting strategies hold therapeutic potential for improving healthspan.