Struc2mapGAN: improving synthetic cryogenic electron microscopy density maps with generative adversarial networks.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-08-04 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf179
Chenwei Zhang, Anne Condon, Khanh Dao Duc
{"title":"<i>Struc2mapGAN</i>: improving synthetic cryogenic electron microscopy density maps with generative adversarial networks.","authors":"Chenwei Zhang, Anne Condon, Khanh Dao Duc","doi":"10.1093/bioadv/vbaf179","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Generating synthetic cryogenic electron microscopy 3D density maps from molecular structures has potential important applications in structural biology. Yet existing simulation-based methods cannot mimic all the complex features present in experimental maps, such as secondary structure elements. As an alternative, we propose <i>struc2mapGAN.</i></p><p><strong>Results: </strong><i>Struc2mapGAN</i> is a novel data-driven method that employs a generative adversarial network to produce improved experimental-like density maps from molecular structures. More specifically, <i>struc2mapGAN</i> uses a nested U-Net architecture as the generator, with an additional L1 loss term and further processing of raw training experimental maps to enhance learning efficiency. While <i>struc2mapGAN</i> can promptly generate maps after training, we demonstrate that it outperforms existing simulation-based methods for a wide array of tested maps and across various evaluation metrics.</p><p><strong>Availability and implementation: </strong>The <i>struc2mapGAN</i> is publicly accessible via https://github.com/chenwei-zhang/struc2mapGAN.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf179"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360846/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Generating synthetic cryogenic electron microscopy 3D density maps from molecular structures has potential important applications in structural biology. Yet existing simulation-based methods cannot mimic all the complex features present in experimental maps, such as secondary structure elements. As an alternative, we propose struc2mapGAN.

Results: Struc2mapGAN is a novel data-driven method that employs a generative adversarial network to produce improved experimental-like density maps from molecular structures. More specifically, struc2mapGAN uses a nested U-Net architecture as the generator, with an additional L1 loss term and further processing of raw training experimental maps to enhance learning efficiency. While struc2mapGAN can promptly generate maps after training, we demonstrate that it outperforms existing simulation-based methods for a wide array of tested maps and across various evaluation metrics.

Availability and implementation: The struc2mapGAN is publicly accessible via https://github.com/chenwei-zhang/struc2mapGAN.

Struc2mapGAN:利用生成对抗网络改进合成低温电子显微镜密度图。
动机:从分子结构中合成低温电子显微镜三维密度图在结构生物学中具有潜在的重要应用。然而,现有的基于模拟的方法无法模拟实验图中存在的所有复杂特征,例如二级结构元素。作为替代方案,我们提出了struc2mapGAN。结果:Struc2mapGAN是一种新颖的数据驱动方法,它采用生成式对抗网络从分子结构中生成改进的实验式密度图。更具体地说,struc2mapGAN使用嵌套的U-Net架构作为生成器,并使用额外的L1损失项和对原始训练实验图的进一步处理来提高学习效率。虽然struc2mapGAN可以在训练后迅速生成地图,但我们证明,对于广泛的测试地图和各种评估指标,它优于现有的基于模拟的方法。可用性和实现:可以通过https://github.com/chenwei-zhang/struc2mapGAN公开访问struc2mapGAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信