{"title":"F-box/LRR-repeat protein 12 reorchestrated microglia to inhibit scarring and achieve adult spinal cord injury repair.","authors":"Xu Xu, Feng Gao, Qixin Chen, Bairu Chen, Wenyu Liang, Runzhi Huang, Yuchen Liu, Zhibo Liu, Yanjing Zhu, Gufa Lin, Bei Ma, Letao Yang, Shaorong Gao, Rongrong Zhu, Liming Cheng","doi":"10.1038/s41392-025-02354-0","DOIUrl":null,"url":null,"abstract":"<p><p>Scarring is an insurmountable obstacle for axonal regeneration in recovery from spinal cord injury (SCI). It impedes the repair effects of therapeutic targets in cortical neurons, such as PTEN<sup>-/-</sup> and hyper-IL-6, which cannot break through dense scar barriers to reconstruct neural circuits. However, methods for eliminating this process remain elusive. Here, we conducted a multiomics analysis of SCI and identified FBXL12 as an effective target for inhibiting scarring, further promoting spontaneous crossing of axons at the epicenter. We identified N6-Methyladenosine (m6A) modification as the predominant mRNA modification in SCI, with Fbxl12 being a major modification target. Furthermore, m6A modification specifically promoted FBXL12 synthesis in activated microglia. The overexpression of FBXL12 in microglia contributed to its homogeneous distribution and maintained a \"scar-less healing\" phenotype. Remarkably, FBXL12 therapy effectively reduced extracellular matrix deposition and decreased the scar area by ~70%. Importantly, axons grew through the epicenter and reached a length of more than 2.4 mm 56 days post-SCI, significantly improving motor function and reconstructing the neural circuit. Mechanistically, FBXL12 promoted cytoskeletal reorganization and migration in microglia by catalyzing the K63-linked ubiquitylation of Myosin heavy chain 14 (MYH14). Together, our results identify m6A-FBXL12-MYH14 axis as a novel cytoskeletal reorganization pathway in activated microglia and suggest FBXL12 as an effective target for a novel microglia-based approach to facilitate scarless functional recovery in SCI.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"10 1","pages":"259"},"PeriodicalIF":52.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-025-02354-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Scarring is an insurmountable obstacle for axonal regeneration in recovery from spinal cord injury (SCI). It impedes the repair effects of therapeutic targets in cortical neurons, such as PTEN-/- and hyper-IL-6, which cannot break through dense scar barriers to reconstruct neural circuits. However, methods for eliminating this process remain elusive. Here, we conducted a multiomics analysis of SCI and identified FBXL12 as an effective target for inhibiting scarring, further promoting spontaneous crossing of axons at the epicenter. We identified N6-Methyladenosine (m6A) modification as the predominant mRNA modification in SCI, with Fbxl12 being a major modification target. Furthermore, m6A modification specifically promoted FBXL12 synthesis in activated microglia. The overexpression of FBXL12 in microglia contributed to its homogeneous distribution and maintained a "scar-less healing" phenotype. Remarkably, FBXL12 therapy effectively reduced extracellular matrix deposition and decreased the scar area by ~70%. Importantly, axons grew through the epicenter and reached a length of more than 2.4 mm 56 days post-SCI, significantly improving motor function and reconstructing the neural circuit. Mechanistically, FBXL12 promoted cytoskeletal reorganization and migration in microglia by catalyzing the K63-linked ubiquitylation of Myosin heavy chain 14 (MYH14). Together, our results identify m6A-FBXL12-MYH14 axis as a novel cytoskeletal reorganization pathway in activated microglia and suggest FBXL12 as an effective target for a novel microglia-based approach to facilitate scarless functional recovery in SCI.
期刊介绍:
Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy.
Scope: The journal covers research on major human diseases, including, but not limited to:
Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.