Evaluation of measurement uncertainty of 11 serum proteins measured by immunoturbidimetric methods according to ISO/TS 20914: a 1-year laboratory data analysis.
{"title":"Evaluation of measurement uncertainty of 11 serum proteins measured by immunoturbidimetric methods according to ISO/TS 20914: a 1-year laboratory data analysis.","authors":"Emine Feyza Yurt, Medine Alpdemir, Mehmet Şeneş","doi":"10.1515/cclm-2025-0654","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Measurement uncertainty (MU) plays an important role in the interpretation of laboratory results, but data on serum proteins analyzed by immunoturbidimetry according to ISO/TS 20914 are limited.</p><p><strong>Methods: </strong>MU of 11 serum proteins, including CRP, RF, ASO, IgG, IgA, IgM, C3, C4, ceruloplasmin, transferrin, and β2-microglobulin, were estimated using 1-year internal quality control (IQC) data obtained from Roche Cobas analyzers. MU was calculated using uncertainty and calibrator uncertainty according to ISO/TS 20914, assuming negligible deviation from external quality assessment data. Analytical performance specification (APS) models were selected according to the EFLM APS selection criteria, and maximum allowable uncertainty (MAU) values were determined based on sources such as EFLM models and literature.</p><p><strong>Results: </strong>IgA and RF were the only two analytes that met the required and minimum MAU values, respectively, at both IQC levels. MU values for CRP, ceruloplasmin, transferrin, and β2-microglobulin exceeded targets at both levels. MU for C3, C4, IgG, and IgM exceeded the minimum MAU at IQC1 but remained acceptable at IQC2. MU values for ASO were calculated as 10.01 and 7.22 % but could not be evaluated due to a lack of reference data. Assay precision should be improved for CRP, IgG, IgM, ceruloplasmin, transferrin, and β2-microglobulin. Use of updated calibration materials for CRP may help reduce MU.</p><p><strong>Conclusions: </strong>Maintaining acceptable precision over a long period remains a challenge for serum proteins analyzed by immunoturbidimetry, highlighting the need for methodological improvements and stricter quality monitoring. In this context, MU assessment is crucial.</p>","PeriodicalId":10390,"journal":{"name":"Clinical chemistry and laboratory medicine","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry and laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/cclm-2025-0654","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Measurement uncertainty (MU) plays an important role in the interpretation of laboratory results, but data on serum proteins analyzed by immunoturbidimetry according to ISO/TS 20914 are limited.
Methods: MU of 11 serum proteins, including CRP, RF, ASO, IgG, IgA, IgM, C3, C4, ceruloplasmin, transferrin, and β2-microglobulin, were estimated using 1-year internal quality control (IQC) data obtained from Roche Cobas analyzers. MU was calculated using uncertainty and calibrator uncertainty according to ISO/TS 20914, assuming negligible deviation from external quality assessment data. Analytical performance specification (APS) models were selected according to the EFLM APS selection criteria, and maximum allowable uncertainty (MAU) values were determined based on sources such as EFLM models and literature.
Results: IgA and RF were the only two analytes that met the required and minimum MAU values, respectively, at both IQC levels. MU values for CRP, ceruloplasmin, transferrin, and β2-microglobulin exceeded targets at both levels. MU for C3, C4, IgG, and IgM exceeded the minimum MAU at IQC1 but remained acceptable at IQC2. MU values for ASO were calculated as 10.01 and 7.22 % but could not be evaluated due to a lack of reference data. Assay precision should be improved for CRP, IgG, IgM, ceruloplasmin, transferrin, and β2-microglobulin. Use of updated calibration materials for CRP may help reduce MU.
Conclusions: Maintaining acceptable precision over a long period remains a challenge for serum proteins analyzed by immunoturbidimetry, highlighting the need for methodological improvements and stricter quality monitoring. In this context, MU assessment is crucial.
期刊介绍:
Clinical Chemistry and Laboratory Medicine (CCLM) publishes articles on novel teaching and training methods applicable to laboratory medicine. CCLM welcomes contributions on the progress in fundamental and applied research and cutting-edge clinical laboratory medicine. It is one of the leading journals in the field, with an impact factor over 3. CCLM is issued monthly, and it is published in print and electronically.
CCLM is the official journal of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and publishes regularly EFLM recommendations and news. CCLM is the official journal of the National Societies from Austria (ÖGLMKC); Belgium (RBSLM); Germany (DGKL); Hungary (MLDT); Ireland (ACBI); Italy (SIBioC); Portugal (SPML); and Slovenia (SZKK); and it is affiliated to AACB (Australia) and SFBC (France).
Topics:
- clinical biochemistry
- clinical genomics and molecular biology
- clinical haematology and coagulation
- clinical immunology and autoimmunity
- clinical microbiology
- drug monitoring and analysis
- evaluation of diagnostic biomarkers
- disease-oriented topics (cardiovascular disease, cancer diagnostics, diabetes)
- new reagents, instrumentation and technologies
- new methodologies
- reference materials and methods
- reference values and decision limits
- quality and safety in laboratory medicine
- translational laboratory medicine
- clinical metrology
Follow @cclm_degruyter on Twitter!