Sukanya Sarkar, Kusumika Gharami, Ananya Mondal, Keerthana Padmanabhan, Ramesh Kumar Paidi, B N Srikumar, Subhas C Biswas
{"title":"TIMP-1 enhances Akt and BDNF signaling in neurons to reduce synaptic and cognitive deficits in 5xFAD mouse model of Alzheimer's disease.","authors":"Sukanya Sarkar, Kusumika Gharami, Ananya Mondal, Keerthana Padmanabhan, Ramesh Kumar Paidi, B N Srikumar, Subhas C Biswas","doi":"10.1186/s40478-025-02060-6","DOIUrl":null,"url":null,"abstract":"<p><p>Glial-secreted molecules influence neuronal function in Alzheimer's disease (AD), but their mechanisms of action are partially understood. Anti-inflammatory cytokine tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) is secreted by astrocytes early in response to amyloid-β and is suggested to have a neuroprotective function. We demonstrated that TIMP-1 levels are increased in 7-day-old 5xFAD versus wild-type mice but are drastically decreased from two months onwards. Administration of TIMP-1 protein in 5xFAD mice ameliorated AD-associated cognitive impairments. TIMP-1 regulated both neuronal apoptosis and autophagy by binding to CD63 receptors in an AD model. Synaptosomal and electrophysiological studies revealed that TIMP-1 reduces AD-related synaptic deficits, likely by promoting post-synaptic long-term potentiation in the hippocampus, independent of pre-synaptic activity. TIMP-1 induced brain-derived neurotrophic factor (BDNF) and BDNF-mediated post-synaptic signaling. These findings suggest that TIMP-1 functions as a multifunctional cytokine with protective and long-term benefits for neurons and may be a promising therapeutic candidate in AD.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"178"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-02060-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Glial-secreted molecules influence neuronal function in Alzheimer's disease (AD), but their mechanisms of action are partially understood. Anti-inflammatory cytokine tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) is secreted by astrocytes early in response to amyloid-β and is suggested to have a neuroprotective function. We demonstrated that TIMP-1 levels are increased in 7-day-old 5xFAD versus wild-type mice but are drastically decreased from two months onwards. Administration of TIMP-1 protein in 5xFAD mice ameliorated AD-associated cognitive impairments. TIMP-1 regulated both neuronal apoptosis and autophagy by binding to CD63 receptors in an AD model. Synaptosomal and electrophysiological studies revealed that TIMP-1 reduces AD-related synaptic deficits, likely by promoting post-synaptic long-term potentiation in the hippocampus, independent of pre-synaptic activity. TIMP-1 induced brain-derived neurotrophic factor (BDNF) and BDNF-mediated post-synaptic signaling. These findings suggest that TIMP-1 functions as a multifunctional cytokine with protective and long-term benefits for neurons and may be a promising therapeutic candidate in AD.
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.