Research on Gear Box Fault Diagnosis Technology Based on PCA-EDPSO-BP Neural Network

IF 3.1 Q2 ENGINEERING, INDUSTRIAL
Daohai Zhang, Yang Lu, Haoran Li
{"title":"Research on Gear Box Fault Diagnosis Technology Based on PCA-EDPSO-BP Neural Network","authors":"Daohai Zhang,&nbsp;Yang Lu,&nbsp;Haoran Li","doi":"10.1049/cim2.70042","DOIUrl":null,"url":null,"abstract":"<p>As a key transmission component, the gear failure (such as broken teeth, wear, pitting, etc.) of the gearbox can easily lead to equipment shutdown, production interruption and even cause safety accidents, which is extremely harmful. The existing fault diagnosis methods have obvious shortcomings: the traditional BP neural network has weak global optimisation ability and slow convergence; the BP model optimised by traditional particle swarm optimisation (PSO) is limited in diagnostic accuracy because PSO is easy to fall into local optimum. In this paper, the data of four working conditions of gears are collected. After preprocessing, an improved PSO algorithm combining weight index change and particle disturbance strategy is proposed to optimise the BP neural network to construct the diagnosis model. Experiments show that the accuracy of this fault diagnosis model is 29% higher than that of the traditional BP model. It provides an efficient and reliable solution for mechanical fault diagnosis, which is of great significance for reducing losses and ensuring safety.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"7 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cim2.70042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

As a key transmission component, the gear failure (such as broken teeth, wear, pitting, etc.) of the gearbox can easily lead to equipment shutdown, production interruption and even cause safety accidents, which is extremely harmful. The existing fault diagnosis methods have obvious shortcomings: the traditional BP neural network has weak global optimisation ability and slow convergence; the BP model optimised by traditional particle swarm optimisation (PSO) is limited in diagnostic accuracy because PSO is easy to fall into local optimum. In this paper, the data of four working conditions of gears are collected. After preprocessing, an improved PSO algorithm combining weight index change and particle disturbance strategy is proposed to optimise the BP neural network to construct the diagnosis model. Experiments show that the accuracy of this fault diagnosis model is 29% higher than that of the traditional BP model. It provides an efficient and reliable solution for mechanical fault diagnosis, which is of great significance for reducing losses and ensuring safety.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

基于PCA-EDPSO-BP神经网络的齿轮箱故障诊断技术研究
齿轮作为传动的关键部件,齿轮的故障(如断齿、磨损、点蚀等)很容易导致设备停机、生产中断甚至引发安全事故,危害极大。现有的故障诊断方法存在明显的缺点:传统的BP神经网络全局优化能力弱,收敛速度慢;传统粒子群算法优化的BP模型容易陷入局部最优,在诊断精度上受到限制。本文对齿轮的四种工况数据进行了采集。在预处理后,提出一种结合权重指标变化和粒子扰动策略的改进粒子群算法,对BP神经网络进行优化,构建诊断模型。实验表明,该故障诊断模型的准确率比传统BP模型提高了29%。它为机械故障诊断提供了一种高效可靠的解决方案,对减少损失、保障安全具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Collaborative Intelligent Manufacturing
IET Collaborative Intelligent Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
2.40%
发文量
25
审稿时长
20 weeks
期刊介绍: IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly. The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信