Definition of Complex One-Parameter Generalized Moore–Penrose Inverses Using Differential Transformations

IF 1.2 Q3 MATHEMATICS, APPLIED
Sargis Simonyan, Hovhannes Abgaryan, Armine Avetisyan
{"title":"Definition of Complex One-Parameter Generalized Moore–Penrose Inverses Using Differential Transformations","authors":"Sargis Simonyan,&nbsp;Hovhannes Abgaryan,&nbsp;Armine Avetisyan","doi":"10.1155/cmm4/8895138","DOIUrl":null,"url":null,"abstract":"<p>This study presents analytical and numerical-analytical decomposition methods for determining complex one-parameter generalized inverse Moore–Penrose matrices. The analytical approach is based on the third Moore–Penrose condition, offering three solution options. The first option employs complex decompositions of the given matrix and its Moore–Penrose inverse. The second option combines the first and third Moore–Penrose conditions, while the third option integrates the second and third conditions. For the first and third options, if any derived iterative procedure converges, the Moore–Penrose inverse matrix can be constructed using the corresponding matrix blocks. In contrast, the second option provides simplified relations, enabling the direct computation of the Moore–Penrose inverse matrix. Numerical-analytical methods build on the second analytical solution, utilizing differential Pukhov transformations as the primary mathematical tool. A model example featuring a rectangular complex matrix is analyzed. A numerical-analytical solution is derived using three matrix discretes, from which corresponding matrix blocks are reconstructed. The Moore–Penrose inverse matrix is then obtained through its complex decomposition.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2025 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/cmm4/8895138","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/cmm4/8895138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents analytical and numerical-analytical decomposition methods for determining complex one-parameter generalized inverse Moore–Penrose matrices. The analytical approach is based on the third Moore–Penrose condition, offering three solution options. The first option employs complex decompositions of the given matrix and its Moore–Penrose inverse. The second option combines the first and third Moore–Penrose conditions, while the third option integrates the second and third conditions. For the first and third options, if any derived iterative procedure converges, the Moore–Penrose inverse matrix can be constructed using the corresponding matrix blocks. In contrast, the second option provides simplified relations, enabling the direct computation of the Moore–Penrose inverse matrix. Numerical-analytical methods build on the second analytical solution, utilizing differential Pukhov transformations as the primary mathematical tool. A model example featuring a rectangular complex matrix is analyzed. A numerical-analytical solution is derived using three matrix discretes, from which corresponding matrix blocks are reconstructed. The Moore–Penrose inverse matrix is then obtained through its complex decomposition.

用微分变换定义复单参数广义Moore-Penrose逆
研究了确定复单参数广义逆摩尔-彭罗斯矩阵的解析分解和数值解析分解方法。分析方法基于第三摩尔-彭罗斯条件,提供了三种解决方案。第一种方法是对给定矩阵及其摩尔-彭罗斯逆矩阵进行复杂分解。第二种选择将第一种和第三种Moore-Penrose条件结合起来,第三种选择将第二种和第三种条件结合起来。对于第一种和第三种选择,如果任何推导的迭代过程收敛,则可以使用相应的矩阵块构造Moore-Penrose逆矩阵。相比之下,第二种选择提供了简化的关系,可以直接计算Moore-Penrose逆矩阵。数值解析方法建立在第二个解析解的基础上,利用微分普霍夫变换作为主要的数学工具。分析了一个矩形复矩阵的模型实例。利用三个矩阵离散导出了数值解析解,并由此重构了相应的矩阵块。然后通过复分解得到Moore-Penrose逆矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信