Min–max relations for tuples of operators in terms of component spaces

IF 1 3区 数学 Q1 MATHEMATICS
Arpita Mal
{"title":"Min–max relations for tuples of operators in terms of component spaces","authors":"Arpita Mal","doi":"10.1007/s43034-025-00465-x","DOIUrl":null,"url":null,"abstract":"<div><p>For tuples of compact operators <span>\\(\\mathcal {T}=(T_1,\\ldots , T_d)\\)</span> and <span>\\(\\mathcal {S}=(S_1,\\ldots ,S_d)\\)</span> on Banach spaces over a field <span>\\(\\mathbb {F}\\)</span>, considering the joint <i>p</i>-operator norms on the tuples, we study <span>\\(dist(\\mathcal {T},\\mathbb {F}^d\\mathcal {S}),\\)</span> the distance of <span>\\(\\mathcal {T}\\)</span> from the <i>d</i>-dimensional subspace <span>\\(\\mathcal {F}^d\\mathcal {S}:=\\{{\\textbf {z}}\\mathcal {S}:{\\textbf {z}}\\in \\mathbb {F}^d\\}.\\)</span> We obtain a relation between <span>\\(dist(\\mathcal {T},\\mathbb {F}^d\\mathcal {S})\\)</span> and <span>\\(dist(T_i,\\mathbb {F}S_i),\\)</span> for <span>\\(1\\le i\\le d.\\)</span> We prove that if <span>\\(p=\\infty ,\\)</span> then <span>\\(dist(\\mathcal {T},\\mathbb {F}^d\\mathcal {S})=\\underset{1\\le i\\le d}{\\max }dist(T_i,\\mathbb {F}S_i),\\)</span> and for <span>\\(1\\le p&lt;\\infty ,\\)</span> under a sufficient condition, <span>\\(dist(\\mathcal {T},\\mathbb {F}^d\\mathcal {S})^p=\\underset{1\\le i\\le d}{\\sum }dist(T_i,\\mathbb {F}S_i)^p.\\)</span> As a consequence, we deduce the equivalence of Birkhoff-James orthogonality, <span>\\(\\mathcal {T}\\perp _B \\mathbb {F}^d\\mathcal {S} \\Leftrightarrow T_i\\perp _B S_i,\\)</span> under a sufficient condition. Furthermore, we explore the relation of one sided Gâteaux derivatives of <span>\\(\\mathcal {T}\\)</span> in the direction of <span>\\(\\mathcal {S}\\)</span> with that of <span>\\(T_i\\)</span> in the direction of <span>\\(S_i.\\)</span> Applying this, we explore the relation between the smoothness of <span>\\(\\mathcal {T}\\)</span> and <span>\\(T_i.\\)</span> By identifying an operator, whose range is <span>\\(\\ell _\\infty ^d,\\)</span> as a tuple of functionals, we effectively use the results obtained here for operators whose range is <span>\\(\\ell _\\infty ^d\\)</span> and deduce nice results involving functionals.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"16 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-025-00465-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For tuples of compact operators \(\mathcal {T}=(T_1,\ldots , T_d)\) and \(\mathcal {S}=(S_1,\ldots ,S_d)\) on Banach spaces over a field \(\mathbb {F}\), considering the joint p-operator norms on the tuples, we study \(dist(\mathcal {T},\mathbb {F}^d\mathcal {S}),\) the distance of \(\mathcal {T}\) from the d-dimensional subspace \(\mathcal {F}^d\mathcal {S}:=\{{\textbf {z}}\mathcal {S}:{\textbf {z}}\in \mathbb {F}^d\}.\) We obtain a relation between \(dist(\mathcal {T},\mathbb {F}^d\mathcal {S})\) and \(dist(T_i,\mathbb {F}S_i),\) for \(1\le i\le d.\) We prove that if \(p=\infty ,\) then \(dist(\mathcal {T},\mathbb {F}^d\mathcal {S})=\underset{1\le i\le d}{\max }dist(T_i,\mathbb {F}S_i),\) and for \(1\le p<\infty ,\) under a sufficient condition, \(dist(\mathcal {T},\mathbb {F}^d\mathcal {S})^p=\underset{1\le i\le d}{\sum }dist(T_i,\mathbb {F}S_i)^p.\) As a consequence, we deduce the equivalence of Birkhoff-James orthogonality, \(\mathcal {T}\perp _B \mathbb {F}^d\mathcal {S} \Leftrightarrow T_i\perp _B S_i,\) under a sufficient condition. Furthermore, we explore the relation of one sided Gâteaux derivatives of \(\mathcal {T}\) in the direction of \(\mathcal {S}\) with that of \(T_i\) in the direction of \(S_i.\) Applying this, we explore the relation between the smoothness of \(\mathcal {T}\) and \(T_i.\) By identifying an operator, whose range is \(\ell _\infty ^d,\) as a tuple of functionals, we effectively use the results obtained here for operators whose range is \(\ell _\infty ^d\) and deduce nice results involving functionals.

在分量空间中算子元组的最小-最大关系
对于紧算符的元组 \(\mathcal {T}=(T_1,\ldots , T_d)\) 和 \(\mathcal {S}=(S_1,\ldots ,S_d)\) 场上的巴拿赫空间 \(\mathbb {F}\),考虑元组上的联合p算子范数,我们研究了 \(dist(\mathcal {T},\mathbb {F}^d\mathcal {S}),\) 的距离 \(\mathcal {T}\) 从d维子空间 \(\mathcal {F}^d\mathcal {S}:=\{{\textbf {z}}\mathcal {S}:{\textbf {z}}\in \mathbb {F}^d\}.\) 我们得到了 \(dist(\mathcal {T},\mathbb {F}^d\mathcal {S})\) 和 \(dist(T_i,\mathbb {F}S_i),\) 为了 \(1\le i\le d.\) 我们证明如果 \(p=\infty ,\) 然后 \(dist(\mathcal {T},\mathbb {F}^d\mathcal {S})=\underset{1\le i\le d}{\max }dist(T_i,\mathbb {F}S_i),\) 对于 \(1\le p<\infty ,\) 在充分条件下, \(dist(\mathcal {T},\mathbb {F}^d\mathcal {S})^p=\underset{1\le i\le d}{\sum }dist(T_i,\mathbb {F}S_i)^p.\) 因此,我们推导出Birkhoff-James正交的等价性, \(\mathcal {T}\perp _B \mathbb {F}^d\mathcal {S} \Leftrightarrow T_i\perp _B S_i,\) 在充分条件下。进一步地,我们探讨了的单侧gaux导数的关系 \(\mathcal {T}\) 在…的方向 \(\mathcal {S}\) 与… \(T_i\) 在…的方向 \(S_i.\) 应用这一点,我们探讨了平滑度与 \(\mathcal {T}\) 和 \(T_i.\) 通过标识一个运算符,其范围为 \(\ell _\infty ^d,\) 作为一个函数元组,我们有效地将这里得到的结果用于范围为的运算符 \(\ell _\infty ^d\) 并推导出包含函数的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信