Positive semigroups and maximum principle for the Heckman-Opdam-Jacobi operator

IF 0.7 Q2 MATHEMATICS
Fida Bahba, Rabiaa Ghabi
{"title":"Positive semigroups and maximum principle for the Heckman-Opdam-Jacobi operator","authors":"Fida Bahba,&nbsp;Rabiaa Ghabi","doi":"10.1007/s13370-025-01359-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the generalized heat equation associated with the Heckman-Opdam-Jacobi operator <span>\\(\\Delta _{\\textrm{HJ}}\\)</span> on <span>\\({\\mathbb {R}}^{d+1}\\)</span>. Specifically, we show that the extension of this operator on the space of continuous functions on <span>\\({\\mathbb {R}}^{d+1}\\)</span> and which tend towards 0 to infinity, is the generator of a positive strongly continuous contraction semi group. This is ensured by a maximum principle for the Heckman-Opdam-Jacobi operator <span>\\(\\Delta _{\\textrm{HJ}}\\)</span>. The explicit solution to the corresponding Cauchy problem incorporates a generalized heat kernel <span>\\(h_t\\)</span>, which is demonstrated to be nonnegative for real arguments.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01359-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the generalized heat equation associated with the Heckman-Opdam-Jacobi operator \(\Delta _{\textrm{HJ}}\) on \({\mathbb {R}}^{d+1}\). Specifically, we show that the extension of this operator on the space of continuous functions on \({\mathbb {R}}^{d+1}\) and which tend towards 0 to infinity, is the generator of a positive strongly continuous contraction semi group. This is ensured by a maximum principle for the Heckman-Opdam-Jacobi operator \(\Delta _{\textrm{HJ}}\). The explicit solution to the corresponding Cauchy problem incorporates a generalized heat kernel \(h_t\), which is demonstrated to be nonnegative for real arguments.

Heckman-Opdam-Jacobi算子的正半群与极大原理
本文在\({\mathbb {R}}^{d+1}\)上研究了与Heckman-Opdam-Jacobi算子\(\Delta _{\textrm{HJ}}\)相关的广义热方程。具体地说,我们证明了该算子在\({\mathbb {R}}^{d+1}\)上趋向于0到无穷的连续函数空间上的扩展是一个正强连续收缩半群的生成。这是由Heckman-Opdam-Jacobi算子\(\Delta _{\textrm{HJ}}\)的最大值原理保证的。相应的柯西问题的显式解包含了一个广义热核\(h_t\),证明了它对于实参数是非负的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信